DOI QR코드

DOI QR Code

HARMONIC NUMBERS AT HALF INTEGER AND BINOMIAL SQUARED SUMS

  • Sofo, Anthony (Victoria University)
  • Received : 2015.07.06
  • Accepted : 2016.03.07
  • Published : 2016.06.25

Abstract

Half integer values of harmonic numbers and reciprocal binomial squared coeffients sums are investigated in this paper. Closed form representations and integral expressions are developed for the infiite series.

Keywords

Alternating harmonic numbers;Half integer harmonic numbers;Binomial squared coefficients;Combinatorial series identities;Summation formulas;Partial fraction approach;Integral representation

References

  1. J. M. Borwein, I. J. Zucker and J. Boersma. The evaluation of character Euler double sums. Ramanujan J. 15 (2008), 377-405. https://doi.org/10.1007/s11139-007-9083-z
  2. J. Choi and D. Cvijovic. Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor. 40 (2007), 15019-15028; Corrigendum, ibidem, 43 (2010), 239801 (1 p). https://doi.org/10.1088/1751-8113/40/50/007
  3. J. Choi. Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 49 (2013), 11p.
  4. J. Choi. Log-Sine and Log-Cosine Integrals, Honam Mathematical J. 35 (2013)(2), 137-146. https://doi.org/10.5831/HMJ.2013.35.2.137
  5. J. Choi, and H. M. Srivastava. Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modelling. 54 (2011), 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032
  6. O. Ciaurri, L. M. Navas, F. J. Ruiz and J. L. Varano. A simple computation of ${\zeta}(2k)$. Amer. Math. Monthly. 122(5) (2015), 444-451. https://doi.org/10.4169/amer.math.monthly.122.5.444
  7. P. Flajolet and B. Salvy. Euler sums and contour integral representations. Exp. Math. 7 (1998), 15-35. https://doi.org/10.1080/10586458.1998.10504356
  8. K. Kolbig. The polygamma function ${\psi}(x)$ for x = 1/4 and x = 3/4. J. Comput. Appl. Math. 75 (1996), 43-46.
  9. H. Liu and W. Wang. Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct. 23 (2012), 49-68. https://doi.org/10.1080/10652469.2011.553718
  10. R. Sitaramachandrarao. A formula of S. Ramanujan. J. Number Theory 25 (1987), 1-19. https://doi.org/10.1016/0022-314X(87)90012-6
  11. A. Sofo. Sums of derivatives of binomial coefficients. Adv. in Appl. Math. 42 (2009), 123-134. https://doi.org/10.1016/j.aam.2008.07.001
  12. A. Sofo. Integral forms associated with harmonic numbers. Appl. Math. Comput. 207 (2009), 365-372. https://doi.org/10.1016/j.amc.2008.10.044
  13. A. Sofo. Integral identities for sums. Math. Commun.. 13 (2008), 303-309.
  14. A. Sofo. Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.
  15. A. Sofo and H. M. Srivastava. Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25 (2011), 93-113. https://doi.org/10.1007/s11139-010-9228-3
  16. A. Sofo. Quadratic alternating harmonic number sums. J. Number Theory. 154 (2015), 144-159. https://doi.org/10.1016/j.jnt.2015.02.013
  17. A. Sofo. Harmonic numbers at half integer values. Accepted, Integral Transforms Spec. Funct., (2016).
  18. A. Sofo. Harmonic sums and intergal representations. J. Appl. Anal. 16 (2010), 265-277.
  19. A. Sofo. Summation formula involving harmonic numbers. Analysis Math. 37 (2011), 51-64. https://doi.org/10.1007/s10476-011-0103-2
  20. H. M. Srivastava and J. Choi,.Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, London, 2001.
  21. H. M. Srivastava and J. Choi. Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  22. W. Wang and C. Jia. Harmonic number identities via the Newton-Andrews method. Ramanujan J. 35 (2014), 263-285. https://doi.org/10.1007/s11139-013-9511-1
  23. C. Wei, D. Gong and Q. Wang. Chu-Vandermonde convolution and harmonic number identities. Integral Transforms Spec. Funct. 24 (2013), 324-330. https://doi.org/10.1080/10652469.2012.689762
  24. D. Y. Zheng. Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335(1) (2007), 692-706. https://doi.org/10.1016/j.jmaa.2007.02.002