DOI QR코드

DOI QR Code

THE TIGHT INTEGRAL CLOSURE OF A SET OF IDEALS RELATIVE TO MODULES

  • Dorostkar, F. (Department of Pure Mathematics, University of Guilan) ;
  • Khosravi, R. (Department of Pure Mathematics, University of Guilan)
  • Received : 2015.04.08
  • Accepted : 2016.03.15
  • Published : 2016.06.25

Abstract

In this paper we will define the tight integral closure of a finite set of ideals of a ring relative to a module and we will study some related results.

Keywords

Tight closure;Integral closure;and Tight integral closure relative to module

References

  1. H. Ansari-Toroghy and F. Dorostkar, On the integral closure of ideals, Honam Math. J., 29(4) (2007), 653-666. https://doi.org/10.5831/HMJ.2007.29.4.653
  2. H. Ansari-Toroghy and F. Dorostkar, Tight closure of ideals relative to modules, Honam Math. J., 32(4) (2010), 675-687. https://doi.org/10.5831/HMJ.2010.32.4.675
  3. H. Ansari-Toroghy and R.Y. Sharp, Integral closure of ideals relative to injective modules over commutative Noetherian rings, Quart. J. Math. Oxford, (2) 42 (1991), 393-402. https://doi.org/10.1093/qmath/42.1.393
  4. F. Dorostkar and R. Khosravi, F-regularity relative to modules, in preparation.
  5. M. Hochster and C. Huneke, Tight closure, invariant theory, and Briancon-Skoda theorem, J. Amer. Math. Soc., 3 (1990), 31-116.
  6. M. Hochster, The tight integral closure of a set of ideals, J. Algebra, 230 (2000), 184-203. https://doi.org/10.1006/jabr.1999.7954
  7. S. MacAdam, Asymptotic prime divisors, Lecture Notes in Mathematics 1023, Springer, Berlin, 1983.
  8. R. Y. Sharp and A. J. Taherizadeh, Reduction and integral closure of ideals relative to an Artinian module, J. London Math. Soc., 37(2) (1988), 203-218.
  9. R. Y. Sharp, Y. Tiras, and M. Yassi, Integral closure of ideals relative to local cohomology module over quasi unmixed local ring, J. London Math. Soc., 42(2) (1990), 385-392.
  10. I. Swanson and C. Huneke, Integral closure of ideals, rings, and modules, Cambridge Univ. Press, New York, 2006.