Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae

Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성

  • Hong, Chang-Il (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Jung, Eui-Gil (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Han, Kook-Il (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Kim, Yong Hyun (BMI Korea Co. Ltd.) ;
  • Lee, Sung Hee (BMI Korea Co. Ltd.) ;
  • Lee, Hong Sub (Laboratory of Microbiology, Il-dong Pharmaceutical Co. Ltd.) ;
  • Han, Man-Deuk (Department of Life Science and Biotechnology, Soonchunhyang University)
  • 홍창일 (순천향대학교 생명시스템학과) ;
  • 정의길 (순천향대학교 생명시스템학과) ;
  • 한국일 (순천향대학교 생명시스템학과) ;
  • 김용현 ((주)한국비엠아이) ;
  • 이성희 ((주)한국비엠아이) ;
  • 이홍섭 (일동제약(주)) ;
  • 한만덕 (순천향대학교 생명시스템학과)
  • Received : 2016.04.13
  • Accepted : 2016.04.22
  • Published : 2016.05.30


Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.


Anti-inflammatory activity;hyaluronic acid;proinflammatory mediators;Streptococcus dysgalactiae;sulfated-hyaluronic acid


  1. Alkrad, J. A., Mrestani, Y., Stroehl, D., Wartewig, S. and Neubert, R. 2003. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectroscopes. J. Pharmaceut. Biomed. 31, 545-550.
  2. Allison, D. D. and Grande-Allen, K. J. 2006. Review. Hyaluronan: a powerful tissue engineering tool. J. Tissue Eng. 12, 2131-2140.
  3. Bernanke, D. H. and Orkin, R. W. 1984. Hyaluronidase activity in embryonic chick heart muscle and cushion tissues and cells. J. Dev. Biol. 106, 351-359.
  4. Boeriu, C. G., Springer, J., Kooy, F. K., van den Broek, L. A. M. and Eggink, G. 2013. Production methods for hyaluronan. J. Carbohydr. Chem. 2013, 14.
  5. Burdick, J. A. and Prestwich, G. D. 2011. Hyaluronic acid hydrogels for biomedical applications. J. Adv. Mater. 23, 41-56.
  6. Celec, P. 2004. Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed. Pharmacother. 58, 365-371.
  7. Choi, C. Y., Park, J. K., Kim, W. S., Jang, M. K. and Nah, J. W. 2011. Preparation and characterization of deoxycholic acid-grafted hyaluronic acid as a drug carrier. Polym. Korea. 35, 119-123.
  8. Condie, R. C. and Prestwich, G. D. 2010. Engineering clinically useful hyaluronan matrices. In: Vernon, B. (ed.), Injectable Biomaterials: Science and application. Woodhead Publishing Limited: London, United Kingdom.
  9. Duerksen-Hughes, P. J., Day, D. B., Laster, S. M., Zachariades, N. A., Aquino, L. and Gooding, L. R. 1992. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. Immunol. 149, 2114-2122.
  10. Fraser, J. R., Laurent, T. C. and Laurent, U. B., 1997. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27-33.
  11. Girish, K. S. and Kemparaju, K. 2007. The magic glue hyaluronan and its eraser hyaluronidase a biological overview. J. Life Sci. 80, 1921-1943.
  12. Han, M. D., Han, Y. S., Hyun, S. H. and Shin, H. W. 2008. Solubilization of water-insoluble beta-glucan isolated from Ganoderma lucidum. J. Environ. Biol. 29, 237-42.
  13. Hiro, D., Ito, A., Matsuta, K. and Mori, Y. 1986. Hyaluronic acid is an endogenous inducer of interleukin-l production by human monocytes and rabbit macrophages. Biochem. Biophys. Res. Commun. 140, 715-722.
  14. Hwang, S. G., Yang, A. N., Kim, S. J., Kim, M. K., Oh, H. J., Lee J. D., Lee, E. J., Nam, K. W. and Han, M. D. 2014. Screening of hyaluronidase inhibitor in Korean medicinal plants. J. Life Sci. 24, 498-504.
  15. Kuo, J. W. 2006. Practical aspects of hyaluronan based medical products. pp. 217. CRC Press/Taylor & Francis Group: Boca Raton, FL, United States.
  16. Kuo, J. W. and Prestwich, G. D. 2010. Hyaluronic acid. pp. 239-259 In: Ducheyne, P., Healy, K., Hutmacher, D., Kirkpatrick, J. (eds), Comprehensive biomaterials. Elsevier Publishers: Amsterdam, Netherlands.
  17. Laurent, T. C. and Fraser, J. R. 1986. The properties and turnover of hyaluronan. Ciba Found. Symp. 124, 9-29.
  18. Laurent, T. C. and Fraser, J. R. 1992. Hyaluronan. FASEB J. 6, 2397-2404.
  19. Lim, H. R. and Shin, S. W. 2010. Effects of the essential oil components from Ligusticum chuanxiong on proinflammatory mediators of RAW264.7 macrophage cells. Nat. Prod. Sci. 16, 259-264.
  20. Liu, L., Liu, Y., Li, J., Du, G. and Chen, J. 2011. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb. Cell Fact. 10, 99.
  21. Locksley, R. M., Killeen, N. and Lenardo, M. J. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.
  22. Masters, S. L., Simon, A. Aksentijevich, I. and Kastner, D. L. 2009. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621-668.
  23. Mosmann, T. 1985. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods 65, 55-63.
  24. Park, H. S., Kim, A. R. and Noh, I. 2013. Physical and biological evaluations of cross-linked hyaluronic acid film. Biomater. Res. 17, 153-159.
  25. Park, S. G., Jegal, K. H., Jung, J. Y., Back, Y. D. Byun, S. H., Kim, Y. W., Cho, I. J., Park, S. M. and Kim, S. C. 2014. Leonuri Fructus ameliorates acute inflammation via the inhibition of NF-κB-mediated nitric oxide and pro-inflammatory cytokine production. Kor. J. Orient. Physiol. Pathol. 28,178-185.
  26. Prestwich, G. D. 2007. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach. J. Cell. Biochem. 101, 1370-1383.
  27. Prestwich, G. D. and Kuo, J. W. 2008. Chemically-modified HA for therapy and regenerative medicine. Curr. Pharm. Biotechnol. 9, 242-245.
  28. Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. and Schwarz, E. M. 2003. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821-831.
  29. Ruggiero, S. L., Bertolami, C. N., Bronson, R. E. and Damiani, P. J. 1987. Hyaluronidase activity of rabbit skin wound granulation tissue fibroblasts. J. Dent. Res. 66, 1283-1287.
  30. Shiedlin, A., Bigelow, R., Christopher, W. Arbabi S, Yang, L., Maier, R. V., Wainwright, N., Childs, A. and Miller, R. J. 2004. Evaluation of hyaluronan from different sources: streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 5, 2122-2127.
  31. Shu, X. Z. and Prestwich, G. D. 2001. Therapeutic Biomaterials from Chemically Modified Hyaluronan. pp. 475-504. In: Hales, C. A. (ed.), Chemistry and Biology of Hyaluronan. Woodhead Publishing Limited: London, United Kingdom.
  32. Toole, B. P. 2001. Hyaluronan in morphogenesis. Semin. Cell Dev. Biol. 12, 79-87.
  33. Toole, B. P. 2004. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528-539.
  34. Wang, S., Chen, Y., He, D., Yang, Y., Chen, J. and Wang, X. 2007. Inhibition of vascular smooth muscle cell proliferation by serum from rats treated orally with Gastrodia and Uncaria decoction, a traditional Chinese formulation. J. Ethnopharmacol. 114, 458-462.
  35. Weiss, C. 1998. Viscoseparation and viscoprotection as therapeutic modalities in the musculoskeletal system. pp. 255-266. In: Laurent, T. C. (ed.) The chemistry, biology and medical applications of hyaluronan and its derivatives. Woodhead Publishing Limited: London, The United Kingdom.
  36. West, D. C., Hampson, I. N., Arnold, F. and Kumar, S. 1985. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324-1328.
  37. Yun, H. Y., Dawson, V. L. and Dawson, T. M. 1996. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10, 291-316.