Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube

불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성

  • Received : 2016.04.06
  • Accepted : 2016.04.17
  • Published : 2016.06.10


To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.


fluorination;illite;carbon nanotube;epoxy composites


  1. R. Das, S. L. Banerjee, R. Kumar, and P. P. Kundu, Development of sustainable elastomeric engineering nanocomposites from linseed oil with improved mechanical stability and thermally induced shape memory properties, J. Ind. Eng. Chem., 35, 388-399 (2016).
  2. M. O. Ansan, S. P. Ansan, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide, J. Ind. Eng. Chem., 20, 2010-2017 (2014).
  3. F. Gardea and D. C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites Part B, 56, 611-620 (2014).
  4. T. Giang and J. Kim, Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite, J. Ind. Eng. Chem., 30, 77-84 (2015).
  5. B. G. Son, T. S. Hwang, and D. C. Goo, Fire-retardation properties of polyurethane nanocomposite by filling inorganic nano flame retardant, Polym. Korea, 31, 404-409 (2007).
  6. J. Bujdak, E. Hackett, and E. P. Giannelis, Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implications on nanocomposite polymer electrolytes, Chem. Mater., 12, 2168-2174 (2000).
  7. S. J. Park, D. I. Seo, and C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites, J. Colloid Interface Sci., 251, 225-229 (2002).
  8. X. Zhao, J. Li, Y. Zhang, H. Dong, J. Qu, and Tao Qi, Preparation of nanosized anatase TiO2-coated illite composite pigments by $Ti(SO_{4})_{2}$ hydrolysis, Powder Technol., 271, 262-269 (2015).
  9. E. Jeong, J. W. Lim, K. W. Seo, and Y. S. Lee, Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites, J. Ind. Eng. Chem., 17, 77-82 (2011).
  10. J. H. Kim, T. D. Dao, and H. M. Jeong, Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity, J. Ind. Eng. Chem., 33, 150-155 (2016).
  11. M. Y. Koo, H. C. Shin, W. S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014).
  12. W. S. Tung, V. Bird, R. J. Composto, N. Clarke, and K. I. Winey, Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering, Macromolecules, 46, 5345-5354 (2013).
  13. G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21, 11-25 (2015).
  14. H. Maka, T. Spychaj, and M. Zenker, High performance epoxy composites cured with ionic liquids, J. Ind. Eng. Chem., 31, 192-198 (2015).
  15. S. H. Park and J. Bae, Tailoring environment friendly carbonnanostructures by surfactant mediated interfacial engineering, J. Ind. Eng. Chem., 30, 1-9 (2015).
  16. K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Fluoro-@$PolymerBaTiO_{3}$ hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application, Chem. Mater., 25, 2327-2338 (2013).
  17. Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Care, N. Rahbar, and J. Lou, Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface, J. Appl. Phys., 115, 224-305 (2014).
  18. E. Jeong and Y. S. Lee, Fluoro-illite/polypropylene composite fiber formation and their thermal and mechanical properties, Appl. Chem. Eng., 22, 467-472 (2011).
  19. M. J. Jung, E. Jeong, and Y. S. Lee, The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 347, 250-257 (2015).
  20. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015).
  21. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015).
  22. O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Mater., 60, 551-554 (2009).
  23. Y. Hattori, N. Noguchi, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Tanaka, H. Kanoh, and K. Kaneko, Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers, Carbon, 45, 1391-1395 (2007).
  24. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Flame retardancy of polypropylene/montmorillonite nanocomposites, Polym. Korea, 29, 248-252 (2005).
  25. H. R. Yu, E. Jeong, J. Kim, and Y. S. Lee, Influence of fluoro-illite on flame retardant property of epoxy complex, Polym. Korea, 35, 47-51 (2011).
  26. J. S. Im, S. K. Lee, S. J. In, and Y. S. Lee, Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives, J. Anal. Appl. Pyrolysis, 89, 225-232 (2010).
  27. C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961).
  28. S. H. Park, S. G. Lee, and S. H. Kim, Thermal decomposition behavior of carbon nanotube reinforced thermotropic liquid crystalline polymers, J. Appl. Polym. Sci., 122, 2060-2070 (2011).
  29. S. E. Lee, S. Cho, and Y. S. Lee, Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding, Carbon Lett., 15, 32-37 (2014).
  30. G. Mittal, V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon Lett., 16, 1-10 (2015).
  31. J. Y. Kim and S. H. Kim, Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 44, 1062-1071 (2006).
  32. P. C. Ma, J. K. Kim, and B. Z. Tang, Effects of silane functionalization on the properties of cargon nanotube/epoxy nanocomposites, Compos. Sci. Technol., 67, 2965-2972 (2007).

Cited by

  1. Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites vol.27, pp.5, 2016,


Supported by : 한국산업기술진흥원