DOI QR코드

DOI QR Code

Recent Trends in Composite Materials for Aircrafts

항공기용 복합소재의 개발 및 연구동향

  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Oh, Dae Youn (Aerospace center, Gyeongnam Technopark) ;
  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 김득주 (경상대학교 나노.신소재융합공학과) ;
  • 오대윤 ((재) 경남테크노파크 항공우주센터) ;
  • 정문기 (경상대학교 나노.신소재융합공학과) ;
  • 남상용 (경상대학교 나노.신소재융합공학과)
  • Received : 2016.04.21
  • Accepted : 2016.05.17
  • Published : 2016.06.10

Abstract

The weight reduction and improved mechanical property are one of the prime factors to develop new materials for the aerospace industry. Composite materials have thus become the most attractive candidate for aircraft and other means of transportations due to their excellent property and light weight. In particular, fiber reinforced polymer (FRP) composite materials have been used as an alternative to metals in the aircraft. The composite materials have shown improved properties compared to those of metal and polymeric materials, which made the composites being used as the skin structure of the airplane. This review introduces different types of materials which have been developed from the FRP composite material and also one of the most advantageous ways to employ the composites in aircraft.

Acknowledgement

Supported by : 산업통상자원부

References

  1. E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures, Mater. Res., 9, 247-256 (2006). https://doi.org/10.1590/S1516-14392006000300002
  2. Y. Xu and S. Van Hoa, Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites, Compos. Sci. Technol., 68, 854-861 (2008). https://doi.org/10.1016/j.compscitech.2007.08.013
  3. P. D. Mangalgiri, Composite materials for aerospace applications, Bull. Mater. Sci., 22, 657-664 (1999). https://doi.org/10.1007/BF02749982
  4. C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci., 41, 143-151 (2005). https://doi.org/10.1016/j.paerosci.2005.02.004
  5. R. Hosseinzadeh, M. M. Shokrieh, and L. Lessard, Damage behavior of fiber reinforced composite plates subjected to drop weight impacts, Compos. Sci. Technol., 66, 61-68 (2006). https://doi.org/10.1016/j.compscitech.2005.05.025
  6. J. Gustin, A. Joneson, M. Mahinfalah, and J. Stone, Low velocity impact of combination Kevlar/carbon fiber sandwich composites, Compos. Struct., 69, 396-406 (2005). https://doi.org/10.1016/j.compstruct.2004.07.020
  7. D. C. Davis, J. W. Wilkerson, J. Zhu, and D. O. O. Ayewah, Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology, Compos. Struct., 92, 2653-2662 (2010). https://doi.org/10.1016/j.compstruct.2010.03.019
  8. C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct., 412, 171-176 (2005). https://doi.org/10.1016/j.msea.2005.08.064
  9. X. F. Wu, A. Rahman, Z. Zhou, D. D. Pelot, S. Sinha-Ray, B. Chen, S. Payne, and A. L. Yarin, Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites, J. Appl. Polym. Sci., 129, 1383-1393 (2013). https://doi.org/10.1002/app.38838
  10. K. Diamanti and C. Soutis, Structural health monitoring techniques for aircraft composite structures, Prog. Aerosp. Sci., 46, 342-352 (2010). https://doi.org/10.1016/j.paerosci.2010.05.001
  11. G. Nitesh, M. J. Augustin, P. S. Sakthi Sathya, J. Saransh, S. R. Viswamurthy, G. M. Kotresh, and S. Ramesh, Structural health monitoring of composite aircraft structures using fiber Bragg grating sensors, J. Indian Inst. Sci., 93, 735-750 (2013).
  12. W. J. Staszewski, S. Mahzan, and R. Traynor, Health monitoring of aerospace composite structures-A ctive and passive approach, Compos. Sci. Technol., 69, 1678-1685 (2009). https://doi.org/10.1016/j.compscitech.2008.09.034
  13. J. Degrieck, W. De Waele, and P. Verleysen, Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels, NDT E Int., 34, 289-296 (2001). https://doi.org/10.1016/S0963-8695(00)00069-4
  14. Y. Y. Hung, Shearography: a new optical method for strain measurement and nondestructive testing, Opt. Eng. 21, 213391 (1982).
  15. C. Boller, F.-K. Chang, and Y. Fujino, Encyclopedia of Structural Health Monitoring, 1st ed., Wiley, NJ, USA (2009).
  16. R. Grimberg, D. Premel, A. Savin, Y. Le Bihan, and D. Placko, Eddy current holography evaluation of delamination in carbon-epoxy composites, Insight, 43, 260-264 (2001).
  17. J. L. Rose, Ultrasonic Waves in Solid Media, 1st ed., Cambridge university press, Cambridge, UK (2004).
  18. C. R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T. H. Gan, P. Purnell, and M. Pharaoh, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event, Compos. Sci. Technol., 64, 1819-1827 (2004). https://doi.org/10.1016/j.compscitech.2004.01.008
  19. P. Cawley and R. D. Adams, Sensitivity of the coin-tap method of nondestructive testing, Mater. Eval., 47, 558-563 (1989).
  20. R. Halmshaw, Development of industrial radiography technique over the last fifty years, Insight, 37, 684-687 (1995).
  21. H. Pihtili and N. Tosun, Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites, Wear, 252, 979-984 (2002). https://doi.org/10.1016/S0043-1648(02)00062-5
  22. M. J. John and S. Thomas, Biofibres and biocomposites, Carbohydr. Polym., 71, 343-364 (2008). https://doi.org/10.1016/j.carbpol.2007.05.040
  23. M. Z. Abedin, M. D. H. Beg, K. L. Pickering, and M. A. Khan, Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation, J. Reinf. Plast. Compos., 25, 575-588 (2006). https://doi.org/10.1177/0731684405056437
  24. K. Imielinska and L. Guillaumat, The effect of water immersion ageing on low-velocity impact behaviour of woven aramid-glass fibre/epoxy composites, Compos. Sci. Technol., 64, 2271-2278 (2004). https://doi.org/10.1016/j.compscitech.2004.03.002
  25. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites, Compos. Struct., 81, 559-567 (2007). https://doi.org/10.1016/j.compstruct.2006.10.003
  26. H. N. Dhakal, Z. Y. Zhang, R. Guthrie, J. MacMullen, and N. Bennett, Development of flax/carbon fibre hybrid composites for enhanced properties, Carbohydr. Polym., 96, 1-8 (2013). https://doi.org/10.1016/j.carbpol.2013.03.074
  27. S. Wang and J. Qiu, Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation, Compos. B-Eng., 41, 533-536 (2010). https://doi.org/10.1016/j.compositesb.2010.07.002
  28. T. H. Hsieh, A. J. Kinloch, K. Masania, J. S. Lee, A. C. Taylor, and S. Sprenger, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193-1210 (2010). https://doi.org/10.1007/s10853-009-4064-9
  29. N. A. Siddiqui, R. S. C. Woo, J.-K. Kim, C. C. K. Leung, and A. Munir, Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix, Compos. A-Appl. Sci. Manuf., 38, 449-460 (2007). https://doi.org/10.1016/j.compositesa.2006.03.001
  30. M. H. G. Wichmann, J. Sumfleth, F. H. Gojny, M. Quaresimin, B. Fiedler, and K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties benefits and limitations of a nanoparticle modified matrix, Eng. Fract. Mech., 73, 2346-2359 (2006). https://doi.org/10.1016/j.engfracmech.2006.05.015
  31. T. Ogasawara, Y. Ishida, and T. Kasai, Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites, Compos. Sci. Technol., 69, 2002-2007 (2009). https://doi.org/10.1016/j.compscitech.2009.05.003
  32. T. Yokozeki, Y. Iwahori, M. Ishibashi, T. Yanagisawa, K. Imai, M. Arai, T. Takahashi, and K. Enomoto, Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes, Compos. Sci. Technol., 69, 2268-2273 (2009). https://doi.org/10.1016/j.compscitech.2008.12.017
  33. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. Van Vuure, L. Gorbatikh, P. Moldenaers, and I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, 47, 2914-2923 (2009). https://doi.org/10.1016/j.carbon.2009.06.039
  34. A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S. V. Lomov, A. W. VanVuure, and I. Verpoest, The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix, Compos. A-Appl. Sci. Manuf., 41, 532-538 (2010). https://doi.org/10.1016/j.compositesa.2010.01.001
  35. M. R. Kessler, N. R. Sottos, and S. R. White, Self-healing structural composite materials, Compos. A-Appl. Sci. Manuf., 34, 743-753 (2003). https://doi.org/10.1016/S1359-835X(03)00138-6
  36. A. Zucchelli, M. L. Focarete, C. Gualandi, and S. Ramakrishna, Electrospun nanofibers for enhancing structural performance of composite materials, Polym. Adv. Technol., 22, 339-349 (2011). https://doi.org/10.1002/pat.1837
  37. J. S. Kim and D. H. Reneker, Mechanical properties of composites using ultrafine electrospun fibers, Polym. Compos., 20, 124-131 (1999). https://doi.org/10.1002/pc.10340
  38. H. M. S. lqbal, A. A. Stec, P. Patel, S. Bhowmik, and R. Benedictus, Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications, Polym. Adv. Technol., 25, 29-35 (2014). https://doi.org/10.1002/pat.3200

Cited by

  1. Research Trend and Product Development Potential of Fungal Mycelium-based Composite Materials vol.32, pp.3, 2017, https://doi.org/10.7841/ksbbj.2017.32.3.174