DOI QR코드

DOI QR Code

Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide

수광층의 카바이드 함량 변화에 따른 실리콘 이종접합 태양전지 특성 변화

  • Kim, Hyunsung (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Sangho (Department of Energy Science, Sungkyunkwan University) ;
  • Lee, Youngseok (Department of Energy Science, Sungkyunkwan University) ;
  • Jeong, Jun-Hui (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yongjun (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Dao, Vinh Ai (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (School of Information and Communication Engineering, Sungkyunkwan University)
  • 김현성 (성균관대학교 전기전자컴퓨터공학과) ;
  • 김상호 (성균관대학교 에너지과학과) ;
  • 이영석 (성균관대학교 에너지과학과) ;
  • 정준희 (성균관대학교 에너지과학과) ;
  • 김용준 (성균관대학교 전기전자컴퓨터공학과) ;
  • 다오빈 아이 (성균관대학교 전기전자컴퓨터공학과) ;
  • 이준신 (성균관대학교 전기전자컴퓨터공학과)
  • Received : 2016.04.11
  • Accepted : 2016.05.24
  • Published : 2016.06.01

Abstract

In this paper, the efficiency improvement of the heterojunction with intrinsic thin layer (HIT) solar cells is obtained by optimization process of p-type a-SiC:H as emitter. The optoelectronic of p-type a-SiC:H layers including the optical band-gap and conductivity under the methane gas content variation is conducted in detail. A significant increase in the Jsc by $1mA/cm^2$ and Voc by 30 mV are attributed to enhanced photon-absorption due to broader band-gap of p-a-SiC:H and reduced band-offsets at p-side interface, respectively of HIT solar cells.

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt., 4, 96 (2014). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2013.2282737] https://doi.org/10.1109/JPHOTOV.2013.2282737
  2. Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. D. Wolf, and C. Ballif, IEEE J. Photovolt., 2, 7 (2012). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2011.2174967] https://doi.org/10.1109/JPHOTOV.2011.2174967
  3. D. Zhang, D. Deligiannis, G. Papakonstantinou, R.A.C. M.M.V. Swaaij, and M. Zeman, IEEE J. Photovolt, 4, 1326 (2014). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2014.2344768] https://doi.org/10.1109/JPHOTOV.2014.2344768
  4. H. Fujiwara, T. Kaneko, and M. Kondo, Appl. Phys. Lett., 91, 133508 (2007). [DOI: http://dx.doi.org/10.1063/1.2790815] https://doi.org/10.1063/1.2790815
  5. M.W.M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van der Werf, R. E. I. Schropp, and W. F. van der Weg, J. Appl. Phys., 82, 6089 (1997). [DOI: http://dx.doi.org/10.1063/1.366479] https://doi.org/10.1063/1.366479
  6. K. Ding, U. Aeberhard, F. Finger, and U. Rau, J. Appl. Phys, 113, 134501 (2013). [DOI: http://dx.doi.org/10.1063/1.4798603] https://doi.org/10.1063/1.4798603
  7. Y. Hattori, D. Kruangam, T. Toyama, H. Okamoto, and Y. Hamakawa, Appl. Surf. Sci., 33, 1276 (1988). [DOI: http://dx.doi.org/10.1016/0169-4332(88)90445-X]
  8. Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, Sol. Energy Mater., 6, 299 (1982). [DOI: http://dx.doi.org/10.1016/0165-1633(82)90036-3] https://doi.org/10.1016/0165-1633(82)90036-3
  9. H. Tarui, T. Matsuyama, S. Okamoto, H. Dohjoh, Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, M. Ohnishi, and Y. Kuwano, J. Appl. Phys., 12, 2436 (1989). [DOI: http://dx.doi.org/10.1143/JJAP.28.2436]
  10. I.F.S. Ionentechnik and F. Julich, J. Non-Cryst. Solids, 266, 845 (2000).
  11. C. L. Zhong, L. E. Luo, H. S. Tan, and K. W. Geng, Sol. Energy, 108, 570 (2014). [DOI: http://dx.doi.org/10.1016/j.solener.2014.08.010] https://doi.org/10.1016/j.solener.2014.08.010