Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor

전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구

  • Lee, Seokhwan (Department of OST School, Korea Maritime and Ocean University) ;
  • Koo, Jieun (International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)) ;
  • Lee, Moonjin (Department of OST School, Korea Maritime and Ocean University) ;
  • Jung, Jung-Yeul (Department of OST School, Korea Maritime and Ocean University) ;
  • Chang, Jiho (Department of OST School, Korea Maritime and Ocean University)
  • 이석환 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 구지은 (일본 물질재료연구기구 재료나노구조공학 국제센터) ;
  • 이문진 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 정정열 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 장지호 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • Received : 2016.03.09
  • Accepted : 2016.04.28
  • Published : 2016.06.01


In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.


Grant : 해양환경변화대응기술

Supported by : 한국해양과학기술원 부설 선박해양플랜트연구소


  1. S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, Advanced Functional Materials, 21, 4464 (2010). [DOI:]
  2. M. Batzill, Sensors, 6, 1345 (2006). [DOI:]
  3. H. Chen, H. Linfeng F. Xiaosheng, and W. Limin, Advanced Functional Materials, 22, 1229 (2012). [DOI:]
  4. L. Qin, P. S. Dutta, and S. Sawyer, Semicond. Sci. Technol., 27, 045005 (2012). [DOI:]
  5. M. Batzill and D. Ulrike, Prog. Surf. Sci., 79, 47 (2005). [DOI:]
  6. V. Elena, P. M. Laurence, F. Fresnel, J. R. James, G. Bernardo, W. Hongxia, C. Larisa, and D. Halina, Sensors and Actuators A: Physical, 171, 87 (2011). [DOI: Diebold]
  7. M. Nistor, J. Perriere, C. T. Heber, and W. Seiler, Journal of Physics. Condensed Matter : an Institute of Physics, 22, 045006 (2010). [DOI:]
  8. J. Koo, S. Park, W. Lee, Y. Cho, H. Lee, S. Lee, and J. Chang, Physica Status Solidi C, 10, 873 (2013). [DOI:]
  9. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science, 265, 1684 (1994). [DOI:]
  10. Z. Bao, Y. Fen, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, Chem. Mater., 9, 1299 (1997). [DOI:]
  11. H. Lee and Y. Chang, Polymer Science and Technology, 22, 237 (2011).
  12. S. H. Lee, J. Koo, S. Jung, M. Lee, J. Y. Jung, and J. Chang, Proc. of SPIE 9655, Fifth Asia-Pacific Optical Sensors Conference, 96553 (2015). [DOI:]
  13. M. Fang, A. Andrey, K. V. Rao, K. A. Andrei, and B. Lyubov, RSC Advances, 3, 19501 (2013). [DOI:]
  14. E. M. Harnett, J. Alderman, and T. Wood, Colloids and Surfaces B: Biointerfaces, 55, 90 (2007) [DOI:]
  15. M. Y. Lee, Ph. D. Thesis, Pukyong National University, Seoul (2008).
  16. S. Nam, The Monthly Packaging World, 209, 58 (2010).
  17. S.S.N. Bharadwaja, C. Venkatasubramanian, N. Fieldhouse, S. Ashok, M. W. Horn, and T. N. Jackson, Appl. Phys. Lett., 94, 222110 (2009). [DOI:]