Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites

무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구

  • Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 홍창효 (울산과학기술원 신소재공학부) ;
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 조욱 (울산과학기술원 신소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2016.04.13
  • Accepted : 2016.05.24
  • Published : 2016.06.01


We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.


Supported by : 한국연구재단


  1. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceram., 29, 71 (2012). [DOI:]
  2. S. H. Shin and J. H. Yoo, Trans. Electr. Electron. Mater., 15, 226 (2014). [DOI:]
  3. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI:]
  4. C. H. Hong, H. S. Han, J. S. Lee, K. Wang, F. Z. Yao, J. F. Li, J. H. Gwon, N. V. Quyet, J. K. Jung, and W. Jo, J. Sensor Sci. & Tech., 24, 228 (2015). [DOI:]
  5. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). [DOI:]
  6. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI:]
  7. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). [DOI:]
  8. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 113 (2007). [DOI:]
  9. S. Zhang, R. Xia, and T. R. Shrout, J. Electroceram., 19, 251 (2007). [DOI:]
  10. W. Liu and X. Ren, Phys. Rev. Lett., 103, 257602 (2009). [DOI:]
  11. J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI:]
  12. K. Wang and J. F. Li. J. Adv. Ceram., 1, 24 (2012). [DOI:]
  13. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). [DOI:]
  14. B. Malic, J. Koruza, J. Hrescak, J. Bernard, K. Wang, J. G. Fisher, and A. Bencan, Materials, 8, 8117 (2015). [DOI:]
  15. S. G. Bae, H. G. Shin, K. H. Chung, J. H. Yoo, and I. H. Im, Trans. Electr. Electron. Mater., 16, 179 (2015). [DOI:]
  16. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Roodel, Appl. Phys. Lett., 91, 112906 (2007). [DOI:]
  17. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Sens. Actuat. A, 158, 84 (2010). [DOI:]
  18. K. N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J. S. Lee, Mater. Lett., 64, 2219 (2010). [DOI:]
  19. V. Q. Nguyen, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn, and J. S. Lee, J. Alloys Compd., 511, 237 (2012). [DOI:]
  20. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013). [DOI:]
  21. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, Appl. Phys. Lett., 99, 062906 (2011). [DOI:]
  22. D. S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, J. Appl. Phys., 112, 124109 (2012). [DOI:]
  23. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee, and J. Rodel, Adv. Funct. Mater., 24, 356 (2014). [DOI:]
  24. C. Groh, W. Jo, and J. Rodel, J. Am. Ceram. Soc., 97, 1465 (2014). [DOI:]
  25. C. Groh, W. Jo, and J. Rodel, J. Appl. Phys., 115, 234107 (2014). [DOI:]
  26. H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, Adv. Electr. Mater., 1, 1500018 (2015).
  27. W. Jo and J. Rodel, Appl. Phys. Lett., 99, 042901 (2011). [DOI:]