DOI QR코드

DOI QR Code

Effect of CuO Addition on the Microstructural and Electrical Properties of Ni-Mn Oxide NTC Thermistor

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 CuO 첨가의 효과

  • Kim, Kyeong-Min (Department of Materials Engineering and Convergence Technology, ERC, Gyeongsang Nat'l University) ;
  • Lee, Sung-Gap (Department of Materials Engineering and Convergence Technology, ERC, Gyeongsang Nat'l University) ;
  • Lee, Dong-Jin (Department of Materials Engineering and Convergence Technology, ERC, Gyeongsang Nat'l University) ;
  • Park, Mi-Ri (Department of Materials Engineering and Convergence Technology, ERC, Gyeongsang Nat'l University)
  • 김경민 (경상대학교 공학원 나노신소재융합공학과) ;
  • 이성갑 (경상대학교 공학원 나노신소재융합공학과) ;
  • 이동진 (경상대학교 공학원 나노신소재융합공학과) ;
  • 박미리 (경상대학교 공학원 나노신소재융합공학과)
  • Received : 2016.03.21
  • Accepted : 2016.05.24
  • Published : 2016.06.01

Abstract

In this study, $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ (x=0~0.25) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ specimens with variation of CuO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with cubic spinel phase. The relationship between ln ${\rho}$ and the reciprocal of absolute temperature(1/T) for the NTC thermistors was shown linearity, which exhibited the typical NTC thermistor properties. With increasing the amount of CuO, resistivity at room temperature, B-value, and temperature coefficient resistance decreased.

Acknowledgement

Grant : 액상공정을 이용한 열변화형 세라믹 박막 및 저온 진공 게터 기술 개발

Supported by : 산업통상자원부

References

  1. Y. M. Kim, C. S. Yim, and G. Yim, J. Eng. Paichai. Univ., 5, 63 (2003).
  2. K. S. Park, D. Y. Bang, S. J. Yun, and B. H. Choi, J. Kor. Ceram. Soc., 40, 11 (2003). [DOI: http://dx.doi.orgorg/10.4191/KCERS.2003.40.1.011] https://doi.org/10.4191/KCERS.2003.40.1.011
  3. E. D. Macklen, Thermisotrs (Scotland: Electrochemical Publications Ltd., 1979).
  4. O. S. Aleksic, M. V. Nikolic, M. D. Lukovic, N. Nikolic, B. M. Radojcic, M. Radovanovic, Z. Djuric, M. Mitric, and P. M. Nikolic, J. Materials Science and Engineering B, 178, 202 (2013). [DOI: http://dx.doi.orgorg/10.1016/j.mseb.2012.11.003] https://doi.org/10.1016/j.mseb.2012.11.003
  5. M. N. Muralidharan, P. R. Rohini, E. K. Sunny, K. R. Dayas, and A. Seema, Ceramics Internatioanl, 38, 6481 (2012). [DOI: http://dx.doi.orgorg/10.1016/j.ceramint.2012.05.025] https://doi.org/10.1016/j.ceramint.2012.05.025
  6. E. Elbadraoui, J. L. Baudour, F. Bouree, B. Gillot, S. Fritsch, and A. Rousset, Solid State Ionics, 38, 219 (1997). [DOI: http://dx.doi.orgorg/10.1016/S0167-2738(96)00559-0]
  7. H. R. Jung, S. G. Lee, M. H Kim, and J. H. Yeo, Microelectronic Engineering, 146, 109 (2015). [DOI: http://dx.doi.orgorg/10.1016/j.mee.2015.06.010] https://doi.org/10.1016/j.mee.2015.06.010
  8. J. J. Couderc, S. Breiu, G. Vanderschaeve, M. Fagot, and A. Rousset, Philosophisical Magazine B, 70, 1077 (1994). https://doi.org/10.1080/01418639408240274
  9. G.D.C. Csete de Gyorgyfalva and I. M. Reaney, J. Eur. Ceram. Soc., 21, 2145 (2001). [DOI: http://dx.doi.orgorg/10.1016/S0955-2219(01)00190-X] https://doi.org/10.1016/S0955-2219(01)00190-X
  10. L. B. Pankratz, Thermodynamic Properties of Elements and Oxides (1987).