DOI QR코드

DOI QR Code

A Review on Silicon Oxide Sureface Passivation for High Efficiency Crystalline Silicon Solar Cell

고효율 결정질 실리콘 태양전지 적용을 위한 실리콘 산화막 표면 패시베이션

  • Jeon, Minhan (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kang, Jiyoon (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Balaji, Nagarajan (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Cheolmin (Department of Energy Science, Sungkyunkwan University) ;
  • Song, Jinsoo (Division of Energy Convergence Engineering, Silla University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 전민한 (성균관대학교 정보통신대학) ;
  • 강지윤 (성균관대학교 정보통신대학) ;
  • ;
  • 박철민 (성균관대학교 에너지과학과) ;
  • 송진수 (신라대학교 에너지융합공학부) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2016.04.04
  • Accepted : 2016.05.13
  • Published : 2016.06.01

Abstract

Minimizing the carrier recombination and electrical loss through surface passivation is required for high efficiency c-Si solar cell. Usually, $SiN_X$, $SiO_X$, $SiON_X$ and $AlO_X$ layers are used as passivation layer in solar cell application. Silicon oxide layer is one of the good passivation layer in Si based solar cell application. It has good selective carrier, low interface state density, good thermal stability and tunneling effect. Recently tunneling based passivation layer is used for high efficiency Si solar cell such as HIT, TOPCon and TRIEX structure. In this paper, we focused on silicon oxide grown by various the method (thermal, wet-chemical, plasma) and passivation effect in c-Si solar cell.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. G. Fisher, M. R. Seacrist, and R. W. Standley, Proc. of the IEEE, 100, 1454 (2012). [DOI: http://dx.doi.org/10.1109/JPROC.2012.2189786] https://doi.org/10.1109/JPROC.2012.2189786
  2. ITRPV Working Group, International Technology Roadmap for Photovoltaic, 7 (2016).
  3. H. Kumar, Royal Society of Chemistry, 4, 3779 (2013).
  4. B. Hoex, J. Appl. Phys., 104, 113703 (2008). [DOI: http://dx.doi.org/10.1063/1.3021091] https://doi.org/10.1063/1.3021091
  5. A. K. Ray, Thin Solid Films, 84, 389 (1981). [DOI: http://dx.doi.org/10.1016/0040-6090(81)90174-7] https://doi.org/10.1016/0040-6090(81)90174-7
  6. O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, Prog. Photovoltaics, 16, 317 (2008). [DOI: http://dx.doi.org/10.1002/pip.814] https://doi.org/10.1002/pip.814
  7. J. Benick, K. Zimmermann, J. Spiegelman, M. Hermle, and S. W. Glunz, Prog. Photovolt Res. Appl., 19, 361 (2011). [DOI: http://dx.doi.org/10.1002/pip.1020] https://doi.org/10.1002/pip.1020
  8. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett., 55, 1363 (1989). [DOI: http://dx.doi.org/10.1063/1.101596] https://doi.org/10.1063/1.101596
  9. S. Mack, A. Wolf, A. Walczak, B. Thaidigsmann, E. Allan Wotke, J. J. Spiegelman, R. Preu, and D. Biro, Sol. Energ. Mat. Sol. C., 95, 2570 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.002] https://doi.org/10.1016/j.solmat.2011.03.002
  10. W. D. Eades and R. M. Swanson, J. Appl. Phys., 58, 4267 (1985). [DOI: http://dx.doi.org/10.1063/1.335562] https://doi.org/10.1063/1.335562
  11. M. J. Kerr and A. Cuevas, Semicond. Sci. Technol., 17, 35 (2002). [DOI: http://dx.doi.org/10.1088/0268-1242/17/1/306] https://doi.org/10.1088/0268-1242/17/1/306
  12. H. Sai, R. Imai, N. Yamamoto, T. Ishiwata, K. Arafune, Y. Ohshita, and M. Yamaguchi, Proc. of the 21st EUPVSEC, Dresden, 2006, p. 915
  13. J. Zhao, Progress in Photovoltaics, 7, 471 (1999). [DOI:http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7] https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
  14. F. Feldmann, Sol. Energ. Mat. Sol. C., 120, 270 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2013.09.017] https://doi.org/10.1016/j.solmat.2013.09.017
  15. J. B. Heng, IEEE Journal of Photovoltaics, 5, 82 (2015). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2014.2360565] https://doi.org/10.1109/JPHOTOV.2014.2360565
  16. V. D. Mihailetchi, Appl. Phys. Lett., 92, 063510 (2008). [DOI: http://dx.doi.org/10.1063/1.2870202] https://doi.org/10.1063/1.2870202
  17. N. E. Grant, Proc. of 24th European Photovoltaic Solar Energy Conference (Hamburg, Germany, 2009) p. 1676-1679.
  18. W. Lu, Energy Procedia, 55, 805 (2014). [DOI: http://dx.doi.org/10.1016/j.egypro.2014.08.063] https://doi.org/10.1016/j.egypro.2014.08.063
  19. T. Oikawa, Current Appl. Phys., 15, 1168 (2015). [DOI: http://dx.doi.org/10.1016/j.cap.2015.07.004] https://doi.org/10.1016/j.cap.2015.07.004
  20. J. W. Lee, Y. Li, and S. M. Sze, WSEAS Trans. Electron, 1.1, 72 (2004).
  21. A. Masuda, Appl. Surf. Sci., 81, 277 (1994). [DOI: http://dx.doi.org/10.1016/0169-4332(94)90284-4] https://doi.org/10.1016/0169-4332(94)90284-4
  22. B. C. Smith and H. H. Lamb, J. Appl. Phys., 83, 7635 (1998). [DOI: http://dx.doi.org/10.1063/1.367881] https://doi.org/10.1063/1.367881
  23. F. Feldmann, Sol. Energ. Mat. Sol. C., 131, 100 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.05.039] https://doi.org/10.1016/j.solmat.2014.05.039
  24. A. Moldovan, Energy Procedia, 55, 834 (2014). [DOI: http://dx.doi.org/10.1016/j.egypro.2014.08.067] https://doi.org/10.1016/j.egypro.2014.08.067
  25. A. Moldovan, Sol. Energ. Mat. Sol. C., 142, 123 (2015). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.06.048] https://doi.org/10.1016/j.solmat.2015.06.048