DOI QR코드

DOI QR Code

Croton Tiglium Extract Induces Apoptosis via Bax/Bcl-2 Pathways in Human Lung Cancer A549 Cells

  • Li, Changyou (Key Laboratory of Cancer Therapy) ;
  • Wu, Xiao (Department of Respiratory, Qingdao Central Hospital) ;
  • Sun, Rongli (Department of Respiratory, Qingdao Central Hospital) ;
  • Zhao, Peng (Key Laboratory of Cancer Therapy) ;
  • Liu, Fengjuan (Department of Respiratory, Qingdao Central Hospital) ;
  • Zhang, Chunling (Department of Respiratory, Qingdao Central Hospital)
  • Published : 2016.11.01

Abstract

Objective: To investigate the impact of a Croton tiglium extract on cellular proliferation and apoptosis in a non-small cell lung cancer cell line (A549) in vitro. Methods: A Croton tiglium seed methanol extract was prepare and assessed for effects on A549 cells regarding cellular proliferation, apoptotic rates, and expression of apoptosis related genes and proteins using real-time PCR and immunofluorescence. Results: The tested Croton tiglium extract inhibited A549 cell proliferation in a dose- and time-dependent manner, with significant elevation of apoptotic indexes at various concentrations after 24 h. In addition, rates in both early and late stages were higher in treated than untreated groups, the $100{\mu}g/ml$ dose causing the highest levels of apoptosis. RT-PCR showed that A549 cells treated with $100{\mu}g/ml$ Croton tiglium extract for 24 h has markedly higher Bax mRNA expression levels and obviously lower Bcl-2 expression levels than controls, equivalent results being observed for proteins by immunofluorescence. However, the mRNA expression levels of Fas and caspase-8 were not significantly altered. Conclusion: A Croton tiglium extract can inhibit proliferation of A549 cells and promote apoptosis though Bax/Bcl-2 pathways.

Keywords

Lung cancer;A549 cells;croton tiglium;apoptosis;Bax;Bcl-2

References

  1. Arroyo ER, Holcomb J (1965) Isolation and structure elucidation of a highly active principle from croton oil. Chem Ind, 8, 350-1.
  2. Cai Y, Sheng ZY, Chen Y, Bai C (2014) Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer. Asian Pac J Cancer Prev, 15, 1711-4. https://doi.org/10.7314/APJCP.2014.15.4.1711
  3. Ding NH, Li JJ, Sun LQ (2013) Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets, 14, 347-56.
  4. El-Mekkawy S, Meselhy MR, Nakamura N, et al (2000) Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry, 53, 457-64. https://doi.org/10.1016/S0031-9422(99)00556-7
  5. Iancu C, Mistry SJ, Arkin S, Atweh GF (2000) Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res, 60, 3537-41.
  6. Itokawa H, Ichihara Y, Mochizuki M, et al (1991) A cytotoxic substance from Sangre de Grado. Chem Pharm Bull , 39,1041-2. https://doi.org/10.1248/cpb.39.1041
  7. Jang WS, Jyoti MA, Kim S, et al (2016) In vitro activity of diterpenoids from the Vietnamese medicinal plant Croton tonkinensis. J Nat Med, 70, 127-32. https://doi.org/10.1007/s11418-015-0937-1
  8. Kim JH, Lee SJ, Han YB, et al (1994) Isolation of isoguanosine from Croton tiglium and its antitumor activity. Arch Pharm Res, 17, 115-8. https://doi.org/10.1007/BF02974234
  9. Kim JY, Yun JW, Kim YS, et al (2015) Mutagenicity and tumor-promoting effects of Tiglium seed extract via PKC and MAPK signaling pathways. Biosci Biotechnol Biochem, 79, 374-83. https://doi.org/10.1080/09168451.2014.980217
  10. Kuo PC, Shen YC, Yang ML, et al (2007) Crotonkinins A and B and related diterpenoids from Croton tonkinensis as anti-inflammatory and antitumor agents. J Nat Prod, 70, 1906-9. https://doi.org/10.1021/np070383f
  11. Kuo YF, Su YZ, Tseng YH, et al (2010) Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells. Free Radic Biol Med , 49, 214-26. https://doi.org/10.1016/j.freeradbiomed.2010.04.005
  12. Kupchan SM, Uchida I, Branfman AR, Dailey RG Jr, Fei BY (1976) Antileukemic principles isolated from euphorbiaceae plants. Science, 191, 571-2. https://doi.org/10.1126/science.1251193
  13. Lee CJ, Yue CH, Lin YJ, et al (2014) Antitumor activity of acriflavine in lung adenocarcinoma cell line A549. Anticancer Res, 34, 6467-72.
  14. Li Q, Ren FQ, Yang CL, et al (2015) Anti-proliferation effects of isorhamnetin on lung cancer cells in vitro and in vivo. Asian Pac J Cancer Prev, 16, 3035-42. https://doi.org/10.7314/APJCP.2015.16.7.3035
  15. Lima GS, Castro-Pinto DB, Machado GC, Maciel MA, Echevarria A (2015) Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 22, 1133-7. https://doi.org/10.1016/j.phymed.2015.08.012
  16. Madrigales-Ahuatzi D, Perez-Gutierrez RM (2016). Evaluation of Anti-inflammatory Activity of Seeds of Phalaris canariensis. Drug Res, 66, 23-7.
  17. McKeage MJ, Jameson MB, Investigators ASSG (2010) Comparative outcomes of squamous and non-squamous non-small cell lung cancer (NSCLC) patients in phase II studies of ASA404 (DMXAA) - retrospective analysis of pooled data. J Thorac Dis, 2, 199-204.
  18. Mota EF, Rosario DM, Silva Veiga AS, et al (2015) Biological activities of Croton palanostigma Klotzsch. Pharmacogn Mag, 11, 601-6. https://doi.org/10.4103/0973-1296.160449
  19. Mudium R, Kolasani B (2014) Anticonvulsant effect of hydroalcoholic seed extract of croton tiglium in rats and mice. J Clin Diagn Res, 8, 24-6. https://doi.org/10.1111/crj.12030
  20. Pal PK, Nandi MK, Singh NK (2014) Detoxification of croton tiglium L. seeds by Ayurvedic process of Sodhana. Anc Sci Life, 33,157-61.
  21. Porichi O, Nikolaidou ME, Apostolaki A, et al (2009) BCL-2, BAX and P53 expression profiles in endometrial carcinoma as studied by real-time PCR and immunohistochemistry. Anticancer Res, 29, 3977-82.
  22. Sandoval M, Okuhama NN, Clark M, et al (2002) Sangre de grado Croton palanostigma induces apoptosis in human gastrointestinal cancer cells. J Ethnopharmacol, 80, 121-9. https://doi.org/10.1016/S0378-8741(02)00013-2
  23. Stark AM, Hugo HH, Tscheslog H, Mehdorn HM (2007) p53, BCL-2 and BAX in non-small cell lung cancer brain metastases: a comparison of real-time RT-PCR, ELISA and immunohistochemical techniques. Neurol Res, 29, 435-40. https://doi.org/10.1179/016164107X165282
  24. Tang Y, Zhang X, Qi F, et al (2015) Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line. Exp Ther Med, 9,1851-6. https://doi.org/10.3892/etm.2015.2314
  25. Then C, von Einem JC, Muller D, et al (2012) Toxic epidermal necrolysis after pemetrexed and cisplatin for non-small cell lung cancer in a patient with sharp syndrome. Onkologie, 35, 783-6. https://doi.org/10.1159/000345109
  26. Thuong PT, Khoi NM, Ohta S, et al (2014) Ent-kaurane diterpenoids from Croton tonkinensis induce apoptosis in colorectal cancer cells through the phosphorylation of JNK mediated by reactive oxygen species and dual-specificity JNK kinase MKK4. Anticancer Agents Med Chem, 14, 1051-61. https://doi.org/10.2174/1871520614666140127111407
  27. Toffart AC , Timsit JF, Couraud S , et al (2014) Immunohistochemistry evaluation of biomarker expression in non-small cell lung cancer (Pharmacogenoscan study). Lung cancer, 83, 182-8. https://doi.org/10.1016/j.lungcan.2013.12.003
  28. Wang S, Su X, Bai H, et al (2015) Identification of plasma microRNA profiles for primary resistance to EGFR-TKIs in advanced non-small cell lung cancer (NSCLC) patients with EGFR activating mutation. J Hematol Oncol, 8, 127. https://doi.org/10.1186/s13045-015-0210-9
  29. Xu L, Qu C, Ma Z (1995) The effects of antitumor agents of croton alkaloids and cisplatin on human red blood cell membranes. Zhonghua zhong liu za zhi, 17, 115-7.
  30. Xu YH, Mei JS, Zhou J (2015) Randomized study of gefitinib versus pemetrexed as maintenance treatment in patients with advanced glandular non-small cell lung cancer. Int J Clin Exp Med, 8, 6242-6.
  31. Yilmaz S, Adas YG, Hicsonmez A, et al (2014) Evaluation of the radiation pneumonia development risk in lung cancer cases. Asian Pac J Cancer Prev, 15, 7371-5. https://doi.org/10.7314/APJCP.2014.15.17.7371
  32. Zhu Y, Lv H, Xie Y, et al (2011) Enhanced tumor suppression by an ING4/IL-24 bicistronic adenovirus-mediated gene cotransfer in human non-small cell lung cancer cells. Cancer Gene Ther, 18, 627-36. https://doi.org/10.1038/cgt.2011.31