DOI QR코드

DOI QR Code

Association between the XRCC3 Thr241Met Polymorphism and Gastrointestinal Cancer Risk: A Meta-Analysis

  • Sahami-Fard, Mohammad Hossein (Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences) ;
  • Mayali, Ali Reza Mousa (Young researchers and Elite club, Science and Research Branch, Islamic Azad University Tehran) ;
  • Tajehmiri, Ahmad (Medical Biology Research Center, Kermanshah University of Medical Sciences)
  • Published : 2016.10.01

Abstract

Background: The x-ray repair cross-complementing group 3 (XRCC3) encodes a protein involved in the homologous recombination repair (HRR) pathway for double-strand DNA repair. Associations of the XRCC3 Thr241Met polymorphism with various cancers have been widely reported. However, published data on links between XRCC3 Thr241Met and gastrointestinal (GI) cancer risk are inconsistent. Objective and Methods: A meta-analysis was conducted to characterize the relationship between XRCC3 Thr241Met polymorphisms and GI cancer risk. Pooled odds ratios (ORs) and 95.0% confidence intervals were assessed using random- or fixed- effect models for 28.0 relevant articles with 30.0 studies containing 7,649.0 cases and 11,123.0 controls. Results: The results of the overall meta-analysis suggested a borderline association between the XRCC3 Thr241Met polymorphism and GI cancer susceptibility (T vs. C: OR=1.18, 9 % CI=1.0-1.4, POR=0.04; TT vs. CT+CC: OR=1.3, 95 % CI=1.0-1.6, POR=0.04). After removing studies not conforming to Hardy-Weinberg equilibrium (HWE), however, this association disappeared (T vs. C: OR=1.00, 95 % CI=0.9-1.1, POR=0.96; TT vs. CT+CC: OR=0.9, 95 % CI=0.8-1.1, POR=0.72). When stratified by ethnicity, source of controls or cancer type, although some associations between XRCC3 Thr241Met polymorphism and GI cancer susceptibility were detected, these associations no longer existed after removing studies not conforming to HWE. Conclusion: Our meta-analysis suggests that the XRCC3 Thr241Met polymorphism is not associated with risk of GI cancer based on current evidence.

Keywords

X-ray repair cross complementing group 3;polymorphism;gastrointestinal cancer;Meta-analysis

References

  1. Abdel-Fatah T, Sultana R, Abbotts R, et al (2013). Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer, 132, 2778-86. https://doi.org/10.1002/ijc.27980
  2. Aka P, Mateuca R, Buchet JP, et al (2004). Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations? Mutat Res, 556, 169-81. https://doi.org/10.1016/j.mrfmmm.2004.08.002
  3. Bajpai D, Banerjee A, Pathak S, et al (2013). Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix. Mol Cell Biochem, 377, 45-53. https://doi.org/10.1007/s11010-013-1569-y
  4. Bei L, Xiao-Dong T, Yu-Fang G, et al (2015). DNA repair gene XRCC3 Thr241Met polymorphisms and lung cancer risk: a meta-analysis. Bull Cancer, 102, 332-9. https://doi.org/10.1016/j.bulcan.2015.02.003
  5. Brenneman MA, Weiss AE, Nickoloff JA, et al (2000). XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat Res, 459, 89-97. https://doi.org/10.1016/S0921-8777(00)00002-1
  6. Canbay E, Agachan B, Gulluoglu M, et al (2010). Possible associations of APE1 polymorphism with susceptibility and HOGG1 polymorphism with prognosis in gastric cancer. Anticancer Res, 30, 1359-64.
  7. Canbay E, Cakmakoglu B, Zeybek U, et al (2011). Association of APE1 and hOGG1 polymorphisms with colorectal cancer risk in a Turkish population. Curr Med Res Opin, 27, 1295-302. https://doi.org/10.1185/03007995.2011.573544
  8. Casson AG, Zheng Z, Evans SC, et al (2005). Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Carcinogenesis, 26, 1536-41. https://doi.org/10.1093/carcin/bgi115
  9. Cheng S, Wang L, Wang L, et al (2015). Association of XRCC3 gene rs861539 polymorphism with gastric cancer risk: evidence from a case-control study and a meta-analysis. Int J Clin Exp Pathol, 8, 1911-9.
  10. Chiurillo MA (2014). Role of gene polymorphisms in gastric cancer and its precursor lesions: current knowledge and perspectives in Latin American countries. World J Gastroenterol, 20, 4503-15. https://doi.org/10.3748/wjg.v20.i16.4503
  11. Christmann M, Tomicic MT, Roos WP, et al (2003). Mechanisms of human DNA repair: an update. Toxicology, 193, 3-34. https://doi.org/10.1016/S0300-483X(03)00287-7
  12. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  13. Djansugurova LB, Perfilyeva AV, Zhunusova GS, et al (2013). The determination of genetic markers of age-related cancer pathologies in populations from Kazakhstan. Front Genet, 4, 70.
  14. Duarte MC, Colombo J, Rossit AR, et al (2005). Polymorphisms of DNA repair genes XRCC1 and XRCC3, interaction with environmental exposure and risk of chronic gastritis and gastric cancer. World J Gastroenterol, 11, 6593-600. https://doi.org/10.3748/wjg.v11.i42.6593
  15. Engin AB (2013). Evaluation of JWA and XRCC1 expressions in gastric cancer. Translational Gastrointestinal Cancer, 94-7.
  16. Fan J, Fan Y, Kang X, et al (2015). XRCC3 T241M polymorphism and melanoma skin cancer risk: A meta-analysis. Oncol Lett, 9, 2425-9. https://doi.org/10.3892/ol.2015.3040
  17. Gil J, Ramsey D, Stembalska A, et al (2012). The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual's susceptibility to sporadic colorectal cancer. Mol Biol Rep, 39, 527-34. https://doi.org/10.1007/s11033-011-0767-5
  18. Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. https://doi.org/10.1002/sim.1186
  19. Hosking L, Lumsden S, Lewis K, et al (2004). Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet, 12, 395-9. https://doi.org/10.1038/sj.ejhg.5201164
  20. Huang GP, Zheng ZL, Cai L (2006). [DNA repair gene XRCC3 Thr241Met polymorphism and susceptibility to cardia and non-cardia gastric cancer: a case-control study]. Zhonghua Liu Xing Bing Xue Za Zhi, 27, 420-3.
  21. Huang WY, Chow WH, Rothman N, et al (2005). Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis, 26, 1354-9. https://doi.org/10.1093/carcin/bgi084
  22. Improta G, Sgambato A, Bianchino G, et al (2008). Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Res, 28, 2941-6.
  23. Jin MJ, Chen K, Song L, et al (2005). The association of the DNA repair gene XRCC3 Thr241Met polymorphism with susceptibility to colorectal cancer in a Chinese population. Cancer Genet Cytogenet, 163, 38-43. https://doi.org/10.1016/j.cancergencyto.2005.05.001
  24. Krupa R, Blasiak J (2004). An association of polymorphism of DNA repair genes XRCC1 and XRCC3 with colorectal cancer. J Exp Clin Cancer Res, 23, 285-94.
  25. Krupa R, Sliwinski T, Wisniewska-Jarosinska M, et al (2011). Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer--a case control study. Mol Biol Rep, 38, 2849-54. https://doi.org/10.1007/s11033-010-0430-6
  26. Manuguerra M, Saletta F, Karagas MR, et al (2006). XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am J Epidemiol, 164, 297-302. https://doi.org/10.1093/aje/kwj189
  27. Mitchell AA, Cutler DJ, Chakravarti A (2003). Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am J Hum Genet, 72, 598-610. https://doi.org/10.1086/368203
  28. Moghtit FZ, Aberkane MS, Le Morvan V, et al (2014). No association between XRCC3 Thr241Met and XPD Lys751Gln polymorphisms and the risk of colorectal cancer in West Algerian population: a case-control study. Med Oncol, 31, 942. https://doi.org/10.1007/s12032-014-0942-3
  29. Moreno V, Gemignani F, Landi S, et al (2006). Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res, 12, 2101-8. https://doi.org/10.1158/1078-0432.CCR-05-1363
  30. Moynahan M (2010). Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol, 11, 196-207. https://doi.org/10.1038/nrm2851
  31. Mucha B, Przybylowska-Sygut K, Dziki AJ, et al (2013). Association of Thr241Met polymorphism of XRCC3 gene with risk of colorectal cancer in the Polish population. Pol J Pathol, 64, 185-90.
  32. Nissar S, Sameer AS, Lone TA, et al (2014). XRCC3 Thr241Met gene polymorphism and risk of colorectal cancer in Kashmir: a case control study. Asian Pac J Cancer Prev, 15, 9621-5. https://doi.org/10.7314/APJCP.2014.15.22.9621
  33. Palli D, Polidoro S, D'Errico M, et al (2010). Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. Mutagenesis, 25, 569-75. https://doi.org/10.1093/mutage/geq042
  34. Pardini B, Naccarati A, Novotny J, et al (2008). DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res, 638, 146-53. https://doi.org/10.1016/j.mrfmmm.2007.09.008
  35. Redig AJ, McAllister SS (2013). Breast cancer as a systemic disease: a view of metastasis. J Intern Med, 274, 113-26. https://doi.org/10.1111/joim.12084
  36. Ruzzo A, Canestrari E, Maltese P, et al (2007). Polymorphisms in genes involved in DNA repair and metabolism of xenobiotics in individual susceptibility to sporadic diffuse gastric cancer. Clin Chem Lab Med, 45, 822-8.
  37. Salanti G, Amountza G, Ntzani EE, et al (2005). Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet, 13, 840-8. https://doi.org/10.1038/sj.ejhg.5201410
  38. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73, 39-85. https://doi.org/10.1146/annurev.biochem.73.011303.073723
  39. Shen H, Wang X, Hu Z, et al (2004). Polymorphisms of DNA repair gene XRCC3 Thr241Met and risk of gastric cancer in a Chinese population. Cancer Lett, 206, 51-8. https://doi.org/10.1016/j.canlet.2003.09.003
  40. Skjelbred CF, Saebo M, Wallin H, et al (2006). Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer, 6, 67. https://doi.org/10.1186/1471-2407-6-67
  41. Song F, Khan KS, Dinnes J, et al (2002). Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol, 31, 88-95. https://doi.org/10.1093/ije/31.1.88
  42. Stern MC, Siegmund KD, Corral R, et al (2005). XRCC1 and XRCC3 polymorphisms and their role as effect modifiers of unsaturated fatty acids and antioxidant intake on colorectal adenomas risk. Cancer Epidemiol Biomarkers Prev, 14, 609-15. https://doi.org/10.1158/1055-9965.EPI-04-0189
  43. Sultana R, Abdel-Fatah T, Abbotts R, et al (2013). Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res, 73, 1621-34. https://doi.org/10.1158/0008-5472.CAN-12-2929
  44. Talar-Wojnarowska R, GASiorowska A, Olakowski M, et al (2016). Analysis of XRCC2 and XRCC3 gene polymorphisms in pancreatic cancer. Biomedical Reports, 4, 236-40. https://doi.org/10.3892/br.2015.550
  45. Torre LA, Bray F, Siegel RL, et al (2015). Global cancer statistics, 2012. CA Cancer J Clin, 65, 87-108. https://doi.org/10.3322/caac.21262
  46. Tranah GJ, Giovannucci E, Ma J, et al (2004). XRCC2 and XRCC3 polymorphisms are not associated with risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev, 13, 1090-1.
  47. Trikalinos TA, Salanti G, Khoury MJ, et al (2006). Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol, 163, 300-9. https://doi.org/10.1093/aje/kwj046
  48. Wang J, Zhao Y, Jiang J, et al (2010). Polymorphisms in DNA repair genes XRCC1, XRCC3 and XPD, and colorectal cancer risk: a case-control study in an Indian population. J Cancer Res Clin Oncol, 136, 1517-25. https://doi.org/10.1007/s00432-010-0809-8
  49. Wu D, Jiang H, Yu H, et al (2013). Significant association between XRCC3 C241T polymorphism and increased risk of hepatocellular carcinoma: a meta-analysis. Tumour Biol, 34, 3865-9. https://doi.org/10.1007/s13277-013-0973-y
  50. Xuan G, Hui Y, Fang H (2015). The association of XRCC3 Thr241Met genetic variant with risk of prostate cancer: a meta-analysis. Afr Health Sci, 15, 117-22. https://doi.org/10.4314/ahs.v15i1.16
  51. Yang CH, Lin YD, Yen CY, et al (2015). A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk. Omics, 19, 238-47. https://doi.org/10.1089/omi.2014.0121
  52. Ye W, Kumar R, Bacova G, et al (2006). The XPD 751Gln allele is associated with an increased risk for esophageal adenocarcinoma: a population-based case-control study in Sweden. Carcinogenesis, 27, 1835-41. https://doi.org/10.1093/carcin/bgl017
  53. Yeh CC, Sung FC, Tang R, et al (2005). Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk: a case-control study in Taiwan. BMC Cancer, 5, 12. https://doi.org/10.1186/1471-2407-5-12
  54. Zhao L, Long XD, Yao JG, et al (2011). Genetic polymorphism of XRCC3 codon 241 and Helicobacter pylori infection-related gastric antrum adenocarcinoma in Guangxi Population, China: a hospital-based case-control study. Cancer Epidemiol, 35, 564-8. https://doi.org/10.1016/j.canep.2011.03.004
  55. Zhao Y, Deng X, Wang Z, et al (2012). Genetic polymorphisms of DNA repair genes XRCC1 and XRCC3 and risk of colorectal cancer in Chinese population. Asian Pac J Cancer Prev, 13, 665-9. https://doi.org/10.7314/APJCP.2012.13.2.665