DOI QR코드

DOI QR Code

Plasma Lipidomics as a Tool for Diagnosis of Extrahepatic Cholangiocarcinoma in Biliary Strictures: a Pilot Study

  • Prachayakul, Varayu (Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University) ;
  • Thearavathanasingha, Phataraphong (Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University) ;
  • Thuwajit, Chanitra (Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University) ;
  • Roytrakul, Sittiruk (Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology) ;
  • Jaresitthikunchai, Janthima (Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology) ;
  • Thuwajit, Peti (Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University)
  • Published : 2016.08.01

Abstract

Biliary obstruction is a common clinical manifestation of various conditions, including extrahepatic cholangiocarcinoma. However, a screening test for diagnosis of extrahepatic cholangiocarcinoma in patients with biliary obstruction is not yet available. According to the rationale that the biliary system plays a major role in lipid metabolism, biliary obstruction may interfere with lipid profiles in the body. Therefore, plasma lipidomics may help indicate the presence or status of disease in biliary obstruction suspected extrahepatic cholangiocarcinoma. This study aimed to use plasma lipidomics for diagnosis of extrahepatic cholangiocarcinoma in patients with biliary obstruction. Plasma from healthy volunteers, patients with benign biliary obstruction extrahepatic cholangiocarcinoma, and other related cancers were used in this study. Plasma lipids were extracted and lipidomic analysis was performed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Lipid profiles from extrahepatic cholangiocarcinoma patients showed significant differences from both normal and benign biliary obstruction conditions, with no distinction between the latter two. Relative intensity of the selected lipid mass was able to successfully differentiate all extrahepatic cholangiocarcinoma samples from patient samples taken from healthy volunteers, patients with benign biliary obstruction, and patients with other related cancers. In conclusion, lipidomics is a non-invasive method with high sensitivity and specificity for identification of extrahepatic cholangiocarcinoma in patients with biliary obstruction.

Keywords

Extrahepatic cholangiocarcinoma;biliary obstruction;lipidomics;MALDI-TOF-MS;diagnosis

Acknowledgement

Supported by : Faculty of Medicine Siriraj Hospital, Mahidol University

References

  1. Aljohani AJ, Edwards G, Guerra Y, et al (2014). Human trabecular meshwork sphingolipid and ceramide profiles and potential latent fungal commensalism. Invest Ophthalmol Vis Sci, 55, 3413-22. https://doi.org/10.1167/iovs.13-13570
  2. Arafah K, Longuespee R, Desmons A, et al (2014). Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/ Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging. OMICS, 18, 487-98. https://doi.org/10.1089/omi.2013.0175
  3. Banales JM, Cardinale V, Carpino G, et al (2016). Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol, 13, 261-80. https://doi.org/10.1038/nrgastro.2016.51
  4. Bayraktar Y, Balkanci F, Ozenc A, et al (1995). The "pseudocholangiocarcinoma sign" in patients with cavernous transformation of the portal vein and its effect on the serum alkaline phosphatase and bilirubin levels. Am J Gastroenterol, 90, 2015-9.
  5. Bligh EG, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37, 911-7. https://doi.org/10.1139/o59-099
  6. Chen S, Yin P, Zhao X, et al (2013). Serum lipid profiling of patients with chronic hepatitis B, cirrhosis, and hepatocellular carcinoma by ultra fast LC/IT-TOF MS. Electrophoresis, 34, 2848-56.
  7. Cohen DE (1999). Hepatocellular transport and secretion of biliary lipids. Curr Opin Lipidol, 10, 295-302. https://doi.org/10.1097/00041433-199908000-00002
  8. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004). Open source clustering software. Bioinformatics, 20, 1453-4. https://doi.org/10.1093/bioinformatics/bth078
  9. Del Boccio P, Pieragostino D, Di Ioia M, et al (2011). Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J Proteomics, 74, 2826-36. https://doi.org/10.1016/j.jprot.2011.06.023
  10. DeWitt J, Misra VL, Leblanc JK, McHenry L, Sherman S (2006). EUS-guided FNA of proximal biliary strictures after negative ERCP brush cytology results. Gastrointest Endosc, 64, 325-33. https://doi.org/10.1016/j.gie.2005.11.064
  11. Duncan MW, Roder H, Hunsucker SW (2008). Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic, 7, 355-70. https://doi.org/10.1093/bfgp/eln041
  12. Eberlin LS, Gabay M, Fan AC, et al (2014). Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Nat Acad Sci USA, 111, 10450-5. https://doi.org/10.1073/pnas.1409778111
  13. Fahy E, Sud M, Cotter D, Subramaniam S (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Res, 35, 606-12. https://doi.org/10.1093/nar/gkm324
  14. Fonteh AN, Harrington RJ, Huhmer AF, et al (2006). Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers, 22, 39-64. https://doi.org/10.1155/2006/202938
  15. Gassler N, Klaus C, Kaemmerer E, Reinartz A (2010). Modifierconcept of colorectal carcinogenesis: lipidomics as a technical tool in pathway analysis. World J Gastroenterol, 16, 1820-7. https://doi.org/10.3748/wjg.v16.i15.1820
  16. Hilvo M, Gade S, Hyotylainen T, et al (2014). Monounsaturated fatty acids in serum triacylglycerols are associated with response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer, 134, 1725-33. https://doi.org/10.1002/ijc.28491
  17. Hunsawong T, Singsuksawat E, In-chon N, et al (2012). Estrogen is increased in male cholangiocarcinoma patients’ serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J Cancer Res Clin Oncol, 138, 1311-20. https://doi.org/10.1007/s00432-012-1207-1
  18. Ishikawa S, Tateya I, Hayasaka T, et al (2012). Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid papillary cancer. PLoS One, 7, 48873. https://doi.org/10.1371/journal.pone.0048873
  19. Jhaveri KS, Hosseini-Nik H (2015). MRI of cholangiocarcinoma. J Magn Reson Imaging, 42, 1165-79. https://doi.org/10.1002/jmri.24810
  20. Jiang W, Zeng ZC, Tang ZY, et al (2011). A prognostic scoring system based on clinical features of intrahepatic cholangiocarcinoma: the Fudan score. Ann Oncol, 22, 1644-52. https://doi.org/10.1093/annonc/mdq650
  21. Jove M, Naudi A, Portero-Otin M, et al (2014). Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB J, 28, 5163-71. https://doi.org/10.1096/fj.14-253187
  22. Knight JA, Anderson S, Rawle JM (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem, 18, 199-202.
  23. Kullak-Ublick GA, Beuers U, Paumgartner G (2000). Hepatobiliary transport. J Hepatol, 32, 3-18.
  24. Larghi A, Tringali A, Lecca PG, Giordano M, Costamagna G (2008). Management of hilar biliary strictures. Am J Gastroenterol, 103, 458-73. https://doi.org/10.1111/j.1572-0241.2007.01645.x
  25. Lumachi F, Lo Re G, Tozzoli R, et al (2014). Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19-9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary case-control study. Anticancer Res, 34, 6663-7.
  26. Navaneethan U, Gutierrez NG, Venkatesh PG, et al (2014). Lipidomic profiling of bile in distinguishing benign from malignant biliary strictures: a single-blinded pilot study. Am J Gastroenterol, 109, 895-902. https://doi.org/10.1038/ajg.2014.60
  27. Ollero M, Astarita G, Guerrera IC, et al (2011). Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients. J Lipid Res, 52, 1011-22. https://doi.org/10.1194/jlr.P013722
  28. Park YS, Yoo CW, Lee SC, et al (2011). Lipid profiles for intrahepatic cholangiocarcinoma identified using matrixassisted laser desorption/ionization mass spectrometry. Clin Chim Acta, 412, 1978-82. https://doi.org/10.1016/j.cca.2011.07.008
  29. Portevin D, Sukumar S, Coscolla M, et al (2014). Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. Microbiologyopen, 3, 823-35. https://doi.org/10.1002/mbo3.193
  30. Quehenberger O, Dennis EA (2011). The human plasma lipidome. N Engl J Med, 365, 1812-23. https://doi.org/10.1056/NEJMra1104901
  31. Rolim AE, Henrique-Araujo R, Ferraz EG, de Araujo Alves Dultra FK, Fernandez LG (2014). Lipidomics in the study of lipid metabolism: Current perspectives in the omic sciences. Gene, 554, 131-9.
  32. Saldanha AJ (2004). Java Treeview--extensible visualization of microarray data. Bioinformatics, 20, 3246-8. https://doi.org/10.1093/bioinformatics/bth349
  33. Soares KC, Kamel I, Cosgrove DP, Herman JM, Pawlik TM (2014). Hilar cholangiocarcinoma: diagnosis, treatment options, and management. Hepatobiliary Surg Nutr, 3, 18-34.
  34. Stegemann C, Pechlaner R, Willeit P, et al (2014). Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation, 129, 1821-31. https://doi.org/10.1161/CIRCULATIONAHA.113.002500
  35. Suzuki R, Thosani N, Annangi S, et al (2014). Diagnostic yield of endoscopic retrograde cholangiopancreatography-based cytology for distinguishing malignant and benign intraductal papillary mucinous neoplasm: systematic review and metaanalysis. Dig Endosc, 26, 586-93. https://doi.org/10.1111/den.12230
  36. Trikudanathan G, Navaneethan U, Njei B, Vargo JJ, Parsi MA (2014). Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc, 79, 783-9. https://doi.org/10.1016/j.gie.2013.09.015
  37. Wang HY, Chu X, Zhao ZX, He XS, Guo YL (2011). Analysis of low molecular weight compounds by MALDI-FTICR-MS. J Chromatogr B Analyt Technol Biomed Life Sci, 879, 1166-79. https://doi.org/10.1016/j.jchromb.2011.03.037
  38. Wu TT, Li HC, Li WM, et al (2015). Percutaneous intraluminal radiofrequency ablation for malignant extrahepatic biliary obstruction: a safe and feasible method. Dig Dis Sci, 60, 2158-63. https://doi.org/10.1007/s10620-015-3547-6
  39. Yao D, Kunam VK, Li X (2014). A review of the clinical diagnosis and therapy of cholangiocarcinoma. J Inter Med Res, 42, 3-16. https://doi.org/10.1177/0300060513505488
  40. Zhang Q, Wakelam MJ (2014). Lipidomics in the analysis of malignancy. Adv Biol Regul, 54, 93-8. https://doi.org/10.1016/j.jbior.2013.11.001
  41. Zhou X, Mao J, Ai J, et al (2012). Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One, 7, 48889. https://doi.org/10.1371/journal.pone.0048889