DOI QR코드

DOI QR Code

E1/E2 of Hepatitis C Virus Genotype-4 and Apoptosis

  • Zekri, Abdel-Rahman N (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Sobhy, Esraa (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Hussein, Nehal (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Ahmed, Ola S (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Hussein, Amira (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Shoman, Sahar (Faculty of Science, Microbiology Department, Ain Shams University) ;
  • Soliman, Amira H (Department of Clinical Pathology, National Cancer Institute, Cairo University) ;
  • El-Din, Hanaa M Alam (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University)
  • Published : 2016.07.01

Abstract

Several studies have addressed the possible role of hepatitis C virus genotype-4 (HCV GT4) in apoptosis. However, this still not fully understood. In the current study a re-constructed clone of E1/E2 polyprotein region of the HCV GT4 was transfected into the Huh7 cell line and a human apoptotic PCR array of 84 genes was used to investigate its possible significance for apoptosis. Out of the 84 genes, only 35 showed significant differential expression, 12 genes being up-regulated and 23 down-regulated. The highest-up regulated genes were APAF1 (apoptotic peptidase-activating factor 1), BID (BH3 interacting domain death agonist) and BCL 10 (B-cell CLL/lymphoma protein 10) with fold regulation of 33.2, 30.1 and 18.9, respectively. The most down-regulated were FAS (TNF receptor super family), TNFRSF10B (tumor necrosis factor receptor super-family member 10b) and FADD (FAS-associated death domain) with fold regulation of -30.2, -27.7 and -14.9, respectively. These results suggest that the E1/E2 proteins may be involved in HCV-induced pathogenesis by modulating apoptosis through the induction of the intrinsic apoptosis pathway and disruption of the BCL2 gene family.

References

  1. Abd Elrazek A, Bilasy S, Elbanna, A, et al (2014). Prior to the oral therapy, what do we know about HCV-4 in Egypt: a randomized survey of prevalence and risks using data mining computed analysis. Medicine (Baltimore), 93. https://doi.org/10.1097/MD.0000000000000093
  2. Abd El-Wahab E, Mikheal A, Sidkey F , et al (2014). Factors Associated with Hepatitis C Infection among Chronic HCV Egyptian Patients. Iran J Public Health, 43, 1510-8.
  3. Ahmad M, Srinivasula S, Wang L, et al (1997). CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res, 57, 615-9.
  4. Alibek K, Irving S, Sautbayeva Z, et al (2014). Disruption of Bcl-2 and Bcl-xL by viral proteins as a possible cause of cancer. Infect Agent Cancer, 9, 44. https://doi.org/10.1186/1750-9378-9-44
  5. Aweya J, Tan J (2011). Modulation of programmed cell death pathways by the hepatitis C virus. Front Biosci (Landmark Ed), 16, 608-18. https://doi.org/10.2741/3709
  6. Bailey D, Kashyap M, Bouton L, et al (2006). Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol, 80, 581-9. https://doi.org/10.1189/jlb.0405201
  7. Bailey J, Wasilewski L, Snider A, et al (2015). Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance. J Clin Investigat, 125, 437-47. https://doi.org/10.1172/JCI78794
  8. Bantel H, Lugering A, Poremba C, et al (2001). Caspase activation correlates with the degree of inflammatory liver injury in chronic hepatitis C virus infection. Hepatol, 34, 758-67. https://doi.org/10.1053/jhep.2001.28229
  9. Bantel H, Schulze-Osthoff K (2003). Apoptosis in hepatitis C virus infection. Cell Death Differ, 10, 48-58. https://doi.org/10.1038/sj.cdd.4401119
  10. Barathan M, Gopal K, Mohamed R, et al (2015). Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis, 20, 466-80. https://doi.org/10.1007/s10495-014-1084-y
  11. Binder J, Tetangco S, Weinshank M, et al (2011). Development of hepatitis C virus chimeric replicons for identifying broad spectrum NS3 protease inhibitors. Antiviral Res, 91, 102-11. https://doi.org/10.1016/j.antiviral.2011.05.007
  12. Bouchardeau F, Cantaloube J, Chevaliez S, et al (2007). Improvement of hepatitis C virus (HCV) genotype determination with the new version of the INNO-LiPA HCV assay. J Clin Microbiol, 45.
  13. Burlone M, Budkowska A (2009). Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol, 90, 1055-70. https://doi.org/10.1099/vir.0.008300-0
  14. Cerella C, Teiten M-H, Radogna F, et al (2014). From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv, 32.
  15. Chaabane W, Cieslar-Pobuda A, El-Gazzah M, et al (2014). Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering. Neoplasia, 16, 679-93. https://doi.org/10.1016/j.neo.2014.08.001
  16. Chambers T, Fan X, Droll D, et al (2005). Quasispecies heterogeneity within the E1/E2 region as a pretreatment variable during pegylated interferon therapy of chronic hepatitis C virus infection. J Virol, 79, 3071-83. https://doi.org/10.1128/JVI.79.5.3071-3083.2005
  17. Chiou H, Hsieh Y, Hsieh M, et al (2006). HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun, 345, 453-8. https://doi.org/10.1016/j.bbrc.2006.04.118
  18. Ciccaglione A, Marcantonio C, Tritarelli E, et al (2004). The transmembrane domain of hepatitis C virus E1 glycoprotein induces cell death. Virus Res, 104.
  19. Clausen L, Weis N, Ladelund S, et al (2015). Genetic variants in the apoptosis gene BCL2L1 improve response to interferonbased treatment of hepatitis C virus genotype 3 infection. Int J Mol Sci, 16, 3213-25. https://doi.org/10.3390/ijms16023213
  20. Di Lorenzo C, Angus A, Patel A (2011). Hepatitis C virus evasion mechanisms from neutralizing antibodies. Viruses, 3, 2280-300. https://doi.org/10.3390/v3112280
  21. Douam F, Lavillette D, Cosset F (2015). The mechanism of HCV entry into host cells. Prog Mol Biol Transl Sci, 129, 63-107.
  22. Figlerowicz M, Jackowiak P, Formanowicz P, et al(2010). Hepatitis C virus quasispecies in chronically infected children subjected to interferon-ribavirin therapy. Arch Virol, 155, 1977-87. https://doi.org/10.1007/s00705-010-0789-7
  23. Fischer R, Baumert T, Blum H. (2007). Hepatitis C virus infection and apoptosis. World J Gastroenterol, 13, 4865-72. https://doi.org/10.3748/wjg.v13.i36.4865
  24. Hase H, Kanno Y, Kojima H, et al (2002). CD27 and CD40 inhibit p53-independent mitochondrial pathways in apoptosis of B cells induced by B cell receptor ligation. J Biol Chem, 277, 46950-8. https://doi.org/10.1074/jbc.M209050200
  25. Hildebrandt M, Roth J, Vaporciyan A, et al (2015). Genetic variation in the TNF/TRAF2/ASK1/p38 kinase signaling pathway as markers for postoperative pulmonary complications in lung cancer patients. Sci Rep, 5.
  26. Hussain S, Garantziotis S (2013). Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy, 9.
  27. Hussein N, Zekri A-RN, Abouelhoda, et al (2014). New insight into HCV E1/E2 region of genotype 4a. Virol J, 11.
  28. Jang J, Kim S, Cho E, et al (2014). TRAIL enhances apoptosis of human hepatocellular carcinoma cells sensitized by hepatitis C virus infection: therapeutic implications. PloS One, 9.
  29. Jin X, Wu X-X, Jin C, et al (2012). Delineation of apoptotic genes for synergistic apoptosis of lexatumumab and anthracyclines in human renal cell carcinoma cells by polymerase chain reaction array. Anticancer Drugs, 23, 445-54. https://doi.org/10.1097/CAD.0b013e32834fd796
  30. Kalkeri G, Khalap N, Akhter S, et al (2001). Hepatitis C viral proteins affect cell viability and membrane permeability. Exp Mol Pathol, 71, 194-208. https://doi.org/10.1006/exmp.2001.2392
  31. Kamegaya Y, Hiasa Y, Zukerberg L, et al (2005). Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatol, 41, 660-7. https://doi.org/10.1002/hep.20621
  32. Lamkanfi M, Kanneganti T (2010). Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol, 42, 21-4. https://doi.org/10.1016/j.biocel.2009.09.013
  33. Lee S, Kim Y, Kim C, et al (2005). E2 of hepatitis C virus inhibits apoptosis. J Immunol, 175.
  34. Li G, Chang H, Zhai Y, et al (2013). Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev, 14, 4943-52.
  35. Li J, Yuan J (2008). Caspases in apoptosis and beyond. Oncogene, 27.
  36. Lim E, Chin R, Angus P, et al (2012). Enhanced apoptosis in post-liver transplant hepatitis C: effects of virus and immunosuppressants. World J Gastroenterol, 18.
  37. Lin Y, Richburg J (2014). Characterization of the role of tumor necrosis factor apoptosis inducing ligand (TRAIL) in spermatogenesis through the evaluation of trail genedeficient mice. PloS One, 9.
  38. Ludwig-Galezowska A, Flanagan L, Rehm M (2011). Apoptosis repressor with caspase recruitment domain, a multifunctional modulator of cell death. J Cell Mol Med, 15.
  39. Manara A, Lindsay J, Marchioretto M, et al (2009). Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo. Biochim Biophys Act, 1791, 997-1010. https://doi.org/10.1016/j.bbalip.2009.05.003
  40. McIlwain D, Berger T, Mak T (2015). Caspase functions in cell death and disease. Cold Spring Harb Perspect Bioly, 7.
  41. Miller F, Abu-Raddad L (2010). Evidence of intense ongoing endemic transmission of hepatitis C virus in Egypt. Proc Natl Acad Sci U S A, 107.
  42. Moradpour D, Mullhaupt B. (2015). Hepatitis C: epidemiology natural course and diagnosis. Rev Medicale Suisse, 11, 896-901 (in French).
  43. Okasha O, Munier A, Delarocque-Astagneau, et al (2015). Hepatitis C virus infection and risk factors in health-care workers at Ain Shams University Hospitals, Cairo, Egypt. East Mediterr Heal J = La Rev sante la Mediterranee Orient = al-Majallah al-sihhiyah li-sharq al-mutawassit, 21, 199-212.
  44. Pavio N, Lai MMC (2003). The hepatitis C virus persistence: how to evade the immune system? J Biosci, 28, 287-304. https://doi.org/10.1007/BF02970148
  45. Revie D, Salahuddin S (2011). Human cell types important for hepatitis C virus replication in vivo and in vitro: old assertions and current evidence. Virol J, 8.
  46. Riad S, El-Ekiaby N, Mekky R, et al (2015). Expression signature of microRNA-155 in hepatitis C virus genotype 4 infection. Biomed reports, 3, 93-97. https://doi.org/10.3892/br.2014.373
  47. Shalaeva D, Dibrova D, Galperin M, et al (2015). Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct, 10, 29. https://doi.org/10.1186/s13062-015-0059-4
  48. Skulachev V (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett, 423, 275-80. https://doi.org/10.1016/S0014-5793(98)00061-1
  49. Tanase C, Albulescu R, Codrici E, et al (2015). Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. Onco Targets Ther, 8, 81-90.
  50. Tawar R, Colpitts C, Timm J, et al (2015). Acute hepatitis C virus infection induces anti-host cell receptor antibodies with virus-neutralizing properties. Hepatol, 62, 726-36. https://doi.org/10.1002/hep.27906
  51. Tsujimoto Y (1998). Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells, 3, 697-707. https://doi.org/10.1046/j.1365-2443.1998.00223.x
  52. Urbaczek A, Ribeiro L, Ximenes V, et al (2014). Inflammatory response of endothelial cells to hepatitis C virus recombinant envelope glycoprotein 2 protein exposure. Memorias do Inst Oswaldo Cruz, 109, 748-56. https://doi.org/10.1590/0074-0276140090
  53. Vogler M, Butterworth M, Majid A, et al (2009). Concurrent upregulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood, 113.
  54. Wu H, Che X, Zheng Q, et al (2014). Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biochem Cell Biol, 10, 1072-83.
  55. Yonezawa T, Kurata R, Kimura M, et al (2011). Which CIDE are you on? Apoptosis and energy metabolism. Mol Biosyst, 7, 91-100. https://doi.org/10.1039/C0MB00099J
  56. Yui D, Yoneda T, Oono K, et al (2001). Interchangeable binding of Bcl10 to TRAF2 and cIAPs regulates apoptosis signaling. Oncogene, 20, 4317-23. https://doi.org/10.1038/sj.onc.1204576
  57. Zekri A, Bahnassy A, Hafez M, et al (2011). Characterization of chronic HCV infection-induced apoptosis. s, 10, 4. https://doi.org/10.1186/1476-5926-10-4
  58. Zhang G, Wan Y, Zhang Y, et al (2015). Expression of Mitochondria-Associated Genes (PPARGC1A, NRF-1, BCL-2 and BAX) in follicular development and atresia of goat ovaries. Reprod Domest Anim, 50, 465-73. https://doi.org/10.1111/rda.12514
  59. Zhu L, Liu J, Xie Y, et al (2004). Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells. World J Gastroenterol, 10, 2972-8. https://doi.org/10.3748/wjg.v10.i20.2972