Gastric Carcinoma: Recent Trends in Diagnostic Biomarkers and Molecular Targeted Therapies

  • Majeed, Wafa (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Iftikhar, Asra (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Khaliq, Tanweer (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Aslam, Bilal (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Muzaffar, Humaira (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Atta, Komal (Department of Physiology, University Medical and Dental College, The University of Faisalabad) ;
  • Mahmood, Aisha (Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture) ;
  • Waris, Shahid (Government College University)
  • Published : 2016.07.01


Gastric cancer is generally associated with poor survival rates and accounts for a remarkable proportion of global cancer mortality. The prevalence of gastric carcinoma varies in different regions of world and across teh various ethnic groups. On the basis of pathological assessment, gastric cancer can be categorized as intestinal and diffuse carcinomas. The etiology is diverse, including chemical carcinogen exposure, and high salt intake Helicobacter pylori also plays a vital role in the pathogenesis of certain gastric carcinomas. The development of gastric cancer involves various alterations in mRNAs, genes (GOLPH3, MTA2) and proteins (Coronins). miRNAs, Hsa-mir-135b, MiR-21, miR-106b, miR-17, miR-18a, MiR-21, miR-106b, miR-17, miR-18a and MiRNA-375, miRNA-195-5p are the latest diagnostic biomarkers which can facilitate the early diagnosis of gastric carcinomas. Recent development in the treatment strategies for gastric carcinoma include the introduction of monoclonal antibodies, TKI inhibitors, inhibitors of PDGFR ${\beta}$, VEGFR-1, VEGFR-2, Anti-EGFR and anti-HER2 agents which can be applied along with conventional therapies.


  1. Lewis GDL, Li G, Dugger DL, et al (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 68, 9280-90.
  2. Pimentel-Nunes P, Afonso L, Lopes P, et al (2011). Increased expression of toll-like receptors (TLR) 2, 4 and 5 in gastric dysplasia. Pathol Oncol Res, 17, 677-3.
  3. Rebekka S, Daniel R, Alexander R (2015). Adjuvant and/or neoadjuvant therapy for gastric cancer? A perspective review. Ther Adv Med Oncol, 7, 39-8.
  4. Ren G, Tian Q, An Y, et al (2016). Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K. Mol Cancer, 11, 1.
  5. Resende C, Thiel A, Machado JC, Ristimaki A (2011). Gastric cancer: basic aspects. Helicobacter, 16, 38-4.
  6. Okamoto W, Okamoto I, Arao T, et al (2012). Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther, 11, 1557-4.
  7. Peng J, Fang Y, Tao Y, et al (2014). Mechanisms of GOLPH3 associated with the progression of gastric cancer: a preliminary study. PloS one, 9, 107362
  8. Ribeiro-dos-Santos A, Khayat AS, Silva A, et al (2010). Ultradeep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One, 5, 1320-5.
  9. Satoh T, Yamada Y, Muro K, et al (2012). Phase I study of cediranib in combination with cisplatin plus fluoropyrimidine (S-1 or capecitabine) in Japanese patients with previously untreated advanced gastric cancer. Cancer Chemother Pharmacol, 69, 439-46.
  10. Scott KL, Kabbarah O, Liang MC, et al (2009). GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature, 459, 1085-90.
  11. Shiotani A, Murao T, Kimura Y, et al (2013). Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer, 109, 2323-30.
  12. Shitara K, Doi T, Ohtsu A (2012). Molecular targeting therapy and biomarker for advanced gastric cancer. J Phys Chem Biophys, 2, 1-6.
  13. Siegel RL, Miller KD, Jemal A (2015). Cancer statistics. CA Cancer J Clin, 6, 5-29.
  14. Sierra JR, Tsao MS (2011). c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol, 3, 21-35.
  15. Slomovitz BM, Coleman RL (2012). The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res, 18, 5856-64.
  16. Song MY, Pan KF, Su HJ, et al (2012). Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PloS one, 7, 33608.
  17. Spratlin JL, Cohen RB, Eadens M, et al (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol, 28, 780-7.
  18. Grabsch H, Sivakumar S, Gray S, Gabbert HE, Muller W (2010). HER2 expression in gastric cancer: Rare, heterogeneous and of no prognostic value - conclusions from 924 cases of two independent series. Cell Oncol, 32, 57-65.
  19. Itoh N, Ornitz DM (2011). Fibroblast growth factors: from molecularevolution to roles in development, metabolism and disease. J Biochem, 149, 121-30.
  20. Janjigian YY, Werner D, Pauligk C, et al (2012). Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann oncol. 23, 2656-62.
  21. Jian-Hui C, Er-Tao Z, Si-Le C, et al (2016). CD44, Sonic Hedgehog, and Gli1 expression are prognostic biomarkers in gastric cancer patients after radical resection. Gastroenterolo Res Pract, 2016, 1-8.
  22. Kaur M, Kaur T, Kamboj SS, Singh J (2016). Roles of Galectin-7 in Cancer. Asian Pac J Cancer Prev, 17, 455-61.
  23. Kim BH, Hong SW, Kim A, Choi SH, Yoon SO (2013). Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncolo, 107, 505-10.
  24. Krupitskaya Y, Wakelee HA (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR- 2 for the potential treatment of cancer. Curr Opin Investig Drugs, 10, 597-05.
  25. Lastraioli E, Raffaella Romoli M, Arcangeli A (2012). Immunohistochemical biomarkers in gastric cancer research and management. Int J Surg Oncol, 1, 1-9.
  26. Li C, Li JF, Cai Q, et al (2013). MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncolo, 108, 89-2.
  27. Lindsay CR, MacPherson IR, Cassidy J (2009). Current status of cediranib: the rapid development of a novel anti-angiogenic therapy. Future Oncol, 5, 421-32.
  28. Luo GQ, Li JH, Wen JF, et al (2008). Effect and mechanism of the Twist gene on invasion and metastasis of gastric carcinoma cells. World J Gastroenterol, 14, 2487-93.
  29. Ma Y, Ren Y, Zhang X, et al (2014). High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch, 464, 443-52.
  30. Majeed W, Aslam B, Javed I, et al (2014). Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev, 15, 3353-8.
  31. Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J (2010). Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol, 21, 683-1.
  32. Matsumoto K, Arao T, Hamaguchi T, et al (2012). FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer, 106, 727-2.
  33. Murayama Y, Oritani K, Tsutsui S (2015). Novel CD9-targeted therapies in gastric cancer. World J Gastroenterol, 21, 3206-13.
  34. Nagini S (2012). Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol, 4, 156-69.
  35. Brade AM, Magalhaes J, Siu L, et al (2007). A single agent, phase I pharmacodynamic study of nimotuzumab (TheraCIMh-R3) in patients with advanced refractory solid tumors. ASCO annual meeting proceedings Part I. J Clin Oncol, 25, 14030.
  36. Carcas LP (2014). Gastric cancer review. J Carcinog, 13, 14.
  37. Chow LQ, Eckhardt SG (2007). Sunitinib: from rational design to clinical efficacy. J Clin Oncol, 25, 884-96.
  38. Alanazi, IO, and Khan Z (2016). Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prev, 17, 445-53.
  39. Appleman LJ (2011). MET signaling pathway: a rational target for cancer therapy. J Clin Oncol, 29, 4837-8.
  40. Ciardiello F, Tortora G (2008). EGFR antagonists in cancer treatment. N Engl J Med, 358, 1160-74.
  41. Cidon EU, Ellis SG, Inam Y, et al (2013). Molecular targeted agents for gastric cancer: a step forward towards personalized therapy. Cancers (Basel), 5, 64-91.
  42. Compare D, Rocco A, Nardone G (2010). Risk factors in gastric cancer. Eur Rev Med Pharmacol Sci, 14, 302-8.
  43. Darnet S, Moreira FC, Hamoy IG, et al (2015). High-Throughput Sequencing of miRNAs Reveals a Tissue Signature in Gastric Cancer and Suggests Novel Potential Biomarkers. Bioinform Biolo Insights, 9, 1-8.
  44. Deng N, Goh LK, Wang H, et al (2012). A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut, 61, 673-84.
  45. Dippold HC, Ng MM, Farber-Katz SE, et al (2009). GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell, 139, 337-51.
  46. Dong L, Qi P, Xu MD, et al (2015). Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int J Cancer, 137, 1128-35.
  47. Fu J, Qin L, He T, et al (2011). The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res, 21, 275-89.
  48. Gao CF, Xie Q, Zhang YW, et al (2009). Therapeutic potential of hepatocyte growth factor/scatter factor neutralizing antibodies: inhibition of tumor growth in both autocrine and paracrine hepatocyte growth factor/scatter factor: c-Metdriven models of leiomyosarcoma. Mol Cancer Ther, 8, 2803-10.
  49. Gorur A, Fidanci SB, Unal ND, et al (2013). Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Reports, 40, 2091-6.
  50. Gomes LL, Moreira FC, Hamoy IG, et al (2014). Identification of miRNAs expression profile in gastric cancer using selforganizing maps (SOM). Bioinformation, 10, 246-50.
  51. Gozgit JM, Wong MJ, Moran L, et al (2012). Ponatinib (AP24534), a multitargeted pan- FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther, 11, 690-9.
  52. Yang H, Wang B, Yan J, et al (2014). Toll-like receptor 2 promotes invasion by SGC-7901 human gastric carcinoma cells and is associated with gastric carcinoma metastasis. Ann Clin Lab Sci, 44, 158-66.
  53. Ychou M, Boige V, Pignon JP, et al (2011). Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol, 29, 1715-21.
  54. Zhou J, Xu T, Qin R, et al (2012). Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. J Neurooncol, 110, 195-3.
  55. Tian S, Quan H, Xie C, et al (2011). YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci, 102, 1374-80.
  56. Tiong KH, Mah LY, Leong CO (2013). Functional roles of fibroblast tgrowth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 18, 1447-68.
  57. Trueb B (2011) . Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell Mol Life Sci, 68, 951-64.
  58. Turner N, Grose R (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 10, 116-29.
  59. Vaisanen MR, Vaisanen T, Jukkola-Vuorinen A, et al (2010). Expression of toll-like receptor-9 is increased in poorly differentiated prostate tumors. Prostate, 70, 817-24.
  60. Vita F, Giuliani F, Silvestris N, et al (2010). Human epidermal growth factor receptor 2 (HER2) in gastric cancer: a new therapeutic target. Cancer Treat Rev, 3, 11-5.
  61. Vita F, Giuliani F, Silvestris N, et al (2012). Current status of targeted therapies in advanced gastric cancer. Expert Opin Ther Targets, 16, S29-4.
  62. Vita F, Orditura M, Martinelli E, et al (2011). A multicenter phase II study of induction chemotherapy with FOLFOX-4 and cetuximab followed by radiation and cetuximab in locally advanced oesophageal cancer. Br J Cancer, 104, 427-32.
  63. Vita F, Di Martino N, Fabozzi A, et al (2014). Clinical management of advanced gastric cancer: The role of new molecular drugs. World J Gastroenterolo, 20, 14537-58.
  64. Vogelaar IP, van der Post RS, Bisseling TM, et al (2012). Familial gastric cancer: detection of a hereditary cause helps to understand its etiology. Hered Cancer Clin Pract, 10, 18.
  65. Wang JH, Chen XT, Wen ZS, et al (2012). High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PloS One, 7, 45622.
  66. Wang JL, Hu Y, Kong X, et al (2013). Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PloS One, 8, 73683.
  67. Wilhelm SM, Adnane L, Newell P, et al (2008). Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther, 7, 3129-40.
  68. Xiao F, Zuo Z, Cai G, et al (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res, 37, 105-10.
  69. Yamashita Y, Iijima S, Yorozu K, et al (2011). Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res, 17, 5060-70.
  70. Takahashi T, Saikawa Y, Kitagawa Y (2013). Gastric cancer: current status of diagnosis and treatment. Cancers, 5, 48-63.
  71. Thal DR, Xavier CP, Rosentreter A, et al (2008). Expression of coronin-3 (coronin-1C) in diffuse gliomas is related to malignancy. J Pathol, 214, 415-24.