Genetic Abnormalities in Oral Leukoplakia and Oral Cancer Progression

  • Kil, Tae Jun (Yonsei Empathy Dental Clinic, Department of Oral & Maxillofacial Surgery) ;
  • Kim, Hyun Sil (Oral Cancer Research Institute) ;
  • Kim, Hyung Jun (College of Dentistry, Yonsei University) ;
  • Nam, Woong (College of Dentistry, Yonsei University) ;
  • Cha, In-Ho (Oral Cancer Research Institute)
  • Published : 2016.06.01

Abstract

Background: The cancer progression of oral leukoplakia is an important watchpoint in the follow-up observation of the patients. However, potential malignancies of oral leukoplakia cannot be estimated by histopathologic assessment alone. We evaluated genetic abnormalities at the level of copy number variation (CNV) to investigate the risk for developing cancer in oral leukoplakias. Materials and Methods: The current study used 27 oral leukoplakias with histological evidence of dysplasia. The first group (progressing dysplasia) consisted of 7 oral lesions from patients with later progression to cancer at the same site. The other group (non-progressing dysplasia) consisted of 20 lesions from patients with no occurrence of oral cancer and longitudinal follow up (>7 years). We extracted DNA from Formalin-Fixed Paraffin-Embedded (FFPE) samples and examined chromosomal loci and frequencies of CNVs using Taqman copy number assays. Results: CNV frequently occurred at 3p, 9p, and 13q loci in progressing dysplasia. Our results also indicate that CNV at multiple loci-in contrast to single locus occurrences-is characteristic of progressing dysplasia. Conclusions: This study suggests that genetic abnormalities of the true precancer demonstrate the progression risk which cannot be delineated by current histopathologic diagnosis.

Keywords

Copy number variation;oral leukoplakia;biomarker;cancer progression

Acknowledgement

Supported by : Ministry for Health, Welfare & Family Affairs, Republic of Korea

References

  1. Brennan JA, Mao L, Hruban RH, et al (1995). Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med, 332, 429-35. https://doi.org/10.1056/NEJM199502163320704
  2. Califano J, van der Riet P, Westra W, et al (1996). Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res, 56, 2488-92.
  3. Choi TH, Chung WB, Hong SH, et al (2000). Microsatellite instability and p53 gene mutation in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg, 26, 337-44.
  4. el-Naggar AK, Hurr K, Batsakis JG, et al (1995). Sequential loss of heterozygosity at microsatellite motifs in preinvasive and invasive head and neck squamous carcinoma. Cancer Res, 55, 2656-9.
  5. el-Naggar AK, Lee MS, Wang G, et al (1993). Polymerase chain reaction-based restriction fragment length polymorphism analysis of the short arm of chromosome 3 in primary head and neck squamous carcinoma. Cancer, 72, 881-6. https://doi.org/10.1002/1097-0142(19930801)72:3<881::AID-CNCR2820720337>3.0.CO;2-Q
  6. Emilion G, Langdon JD, Speight P, Partridge M (1996). Frequent gene deletions in potentially malignant oral lesions. Br J Cancer, 73, 809-13. https://doi.org/10.1038/bjc.1996.142
  7. Feuk L, Carson AR, Scherer SW (2006). Structural variation in the human genome. Nat Rev Genet, 7, 85-97.
  8. Garnis C, Chari R, Buys TP, et al (2009). Genomic imbalances in precancerous tissues signal oral cancer risk. Mol Cancer, 8, 50. https://doi.org/10.1186/1476-4598-8-50
  9. Ha PK, Pilkington TA, Westra WH, et al (2002). Progression of microsatellite instability from premalignant lesions to tumors of the head and neck. Int J Cancer, 102, 615-7. https://doi.org/10.1002/ijc.10748
  10. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009). Mechanisms of change in gene copy number. Nat Rev Genet, 10, 551-64.
  11. Henrichsen CN, Chaignat E, Reymond A (2009). Copy number variants, diseases and gene expression. Hum Mol Genet, 18, 1-8. https://doi.org/10.1093/hmg/ddp011
  12. Ji Young B, Jung Hoon Y, Jong In Y, et al (2001). Cyclin D1 expression for risk assessment of malignant transformation in oral precancerous lesions. Kor J Oral Maxillofac Pathol, 25, 1-15.
  13. Jin Ha W, Jung Hoon Y, In Ho C, et al (2002). The analysis of p53 and p63 expression for the risk assessment of malignant transformation in oral precancerous lesions. Kor J Oral Maxillofac Pathol, 26, 315-27.
  14. Kallioniemi A, Kallioniemi OP, Sudar D, et al (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258, 818-21. https://doi.org/10.1126/science.1359641
  15. Maestro R, Gasparotto D, Vukosavljevic T, et al (1993). Three discrete regions of deletion at 3p in head and neck cancers. Cancer Res, 53, 5775-9.
  16. Maestro R, Piccinin S, Doglioni C, et al (1996). Chromosome 13q deletion mapping in head and neck squamous cell carcinomas: identification of two distinct regions of preferential loss. Cancer Res, 56, 1146-50.
  17. Mao L, Lee JS, Fan YH, et al (1996). Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med, 2, 682-5. https://doi.org/10.1038/nm0696-682
  18. Martin CL, Reshmi SC, Ried T, et al (2008). Chromosomal imbalances in oral squamous cell carcinoma: examination of 31 cell lines and review of the literature. Oral Oncol, 44, 369-82. https://doi.org/10.1016/j.oraloncology.2007.05.003
  19. Neville BW (2002). Oral & maxillofacial pathology 2nd ed. ed. W.B. Saunders, Philadelphia, 338.
  20. Oh J-H, Nishimura I (2008). Understanding of epigenetics and DNA methylation. J Korean Assoc Maxillofac Plast Reconstr Surg, 30, 205-12.
  21. Partridge M, Emilion G, Pateromichelakis S, et al (1999). The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer. Br J Cancer, 79, 1821-7. https://doi.org/10.1038/sj.bjc.6990290
  22. Partridge M, Emilion G, Pateromichelakis S, et al (1998). Allelic imbalance at chromosomal loci implicated in the pathogenesis of oral precancer, cumulative loss and its relationship with progression to cancer. Oral Oncol, 34, 77-83. https://doi.org/10.1016/S1368-8375(97)00052-3
  23. Pateromichelakis S, Lee G, Langdon JD, Partridge M (2000). The FHIT gene in oral squamous cell carcinoma: allelic imbalance is frequent but cDNA aberrations are uncommon. Oral Oncol, 36, 180-8. https://doi.org/10.1016/S1368-8375(99)00062-7
  24. Rosin MP, Cheng X, Poh C, et al (2000). Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res, 6, 357-62.
  25. Schepman KP, van der Meij EH, Smeele LE, van der Waal I (1998). Malignant transformation of oral leukoplakia: a follow-up study of a hospital-based population of 166 patients with oral leukoplakia from The Netherlands. Oral Oncol, 34, 270-5. https://doi.org/10.1016/S1368-8375(98)80007-9
  26. Silverman S, Jr., Gorsky M, Lozada F (1984). Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer, 53, 563-8. https://doi.org/10.1002/1097-0142(19840201)53:3<563::AID-CNCR2820530332>3.0.CO;2-F
  27. Singh J, Jayaraj R, Baxi S, et al (2013). An Australian retrospective study to evaluate the prognostic role of p53 and eIF4E cancer markers in patients with head and neck squamous cell carcinoma (HNSCC): study protocol. Asian Pac J Cancer Prev, 14, 4717-21. https://doi.org/10.7314/APJCP.2013.14.8.4717
  28. van der Riet P, Nawroz H, Hruban RH, et al (1994). Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res, 54, 1156-8.
  29. Wang K, Li M, Hadley D, et al (2007). PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res, 17, 1665-74. https://doi.org/10.1101/gr.6861907
  30. Wu CL, Sloan P, Read AP, et al (1994). Deletion mapping on the short arm of chromosome 3 in squamous cell carcinoma of the oral cavity. Cancer Res, 54, 6484-8.
  31. Ye H, Pungpravat N, Huang BL, et al (2007). Genomic assessments of the frequent loss of heterozygosity region on 8p21.3-p22 in head and neck squamous cell carcinoma. Cancer Genet Cytogenet, 176, 100-6. https://doi.org/10.1016/j.cancergencyto.2007.04.003