Garlic Phytocompounds Possess Anticancer Activity by Specifically Targeting Breast Cancer Biomarkers - an in Silico Study

  • Roy, Nabarun (Distributed Information Centre) ;
  • Davis, Sangeetha (Distributed Information Centre) ;
  • Narayanankutty, Arunaksharan (Amala Cancer Research Centre) ;
  • Nazeem, PA (Distributed Information Centre) ;
  • Babu, TD (Amala Cancer Research Centre) ;
  • Abida, PS (Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University) ;
  • Valsala, PA (Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University) ;
  • Raghavamenon, Achuthan C (Amala Cancer Research Centre)
  • Published : 2016.06.01

Abstract

Background: Breast cancer (BC) is a serious lifestyle disease. There are several prognostic biomarkers like nuclear receptors whose over-expression is associated with BC characteristics. These biomarkers can be blocked by compounds with anti-cancer potential but selection must be made on the basis of no adverse side effects. This study is focused on finding of compounds from a plant source garlic. Materials and Methods: Twenty compounds from garlic and five targets considered involved in BC were retrieved from Pubchem database and Protein Data Bank respectively. They were docked using Accelrys Discovery Studio (DS) 4.0. The compounds which showed interaction were checked for drug likeliness. Results: Docking studies and ADMET evaluation revealed twelve compounds to be active against the targets. All the compounds displayed highly negative dock scores which indicated good interactions. Conclusions: The results of this study should help researchers and scientists in the pharmaceutical field to identify drugs based on garlic.

Keywords

Breast cancer;nuclear receptor;garlic;discovery studio;docking;ADMET

Acknowledgement

Supported by : Ministry of Science and Technology, Govt. of India

References

  1. Abduljabbar R, Negm OH, Lai CF, et al (2015). Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer. Breast Cancer Res Treat, 150, 335-46. https://doi.org/10.1007/s10549-015-3335-1
  2. Bagul M, Kakumanu S, Wilson TA (2015). Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J Med Food, 18, 731-7. https://doi.org/10.1089/jmf.2014.0064
  3. Barlow DJ, Buriani A, Ehrman T, et al (2012). In-silico studies in Chinese herbal medicines' research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol, 140, 526-34. https://doi.org/10.1016/j.jep.2012.01.041
  4. Benson JR, I J (2012). The global breast cancer burden. Future Oncol, 8, 697-702. https://doi.org/10.2217/fon.12.61
  5. Brooks BR, Brooks CL, 3rd, Mackerell AD, Jr., et al (2009). CHARMM: the biomolecular simulation program. J Comput Chem, 30, 1545-614. https://doi.org/10.1002/jcc.21287
  6. Cecchelli R, Berezowski V, Lundquist S, et al (2007). Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov, 6, 650-61. https://doi.org/10.1038/nrd2368
  7. Chen X, Yan CC, Zhang X, et al (2015). Drug-target interaction prediction: databases, web servers and computational models. Brief Bioinform.
  8. Confortini CC, Krong B (2015). Breast cancer in the global south and the limitations of a biomedical framing: a critical review of the literature. Health Policy Plan, 30, 1350-61. https://doi.org/10.1093/heapol/czu134
  9. Contro V, Basile JR, Proia P (2015). Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS Mol Sci, 2, 294-310. https://doi.org/10.3934/molsci.2015.3.294
  10. Conzen SD (2008). Minireview: nuclear receptors and breast cancer. Mol Endocrinol, 22, 2215-28. https://doi.org/10.1210/me.2007-0421
  11. Diep CH, Daniel AR, Mauro LJ, et al (2015). Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol, 54, 31-53. https://doi.org/10.1530/JME-14-0252
  12. Dubey AK, Gupta U, Jain S (2015). Breast cancer statistics and prediction methodology: a systematic review and analysis. Asian Pac J Cancer Prev, 16, 4237-45. https://doi.org/10.7314/APJCP.2015.16.10.4237
  13. Ferlay J, Soerjomataram I, Dikshit R, et al (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136, 359-86. https://doi.org/10.1002/ijc.29210
  14. Ferreira L, dos Santos R, Oliva G, et al (2015). Molecular docking and structure-based drug design strategies. Molecules, 20, 13384-421. https://doi.org/10.3390/molecules200713384
  15. Fioretti FM, Sita-Lumsden A, Bevan CL, et al (2014). Revising the role of the androgen receptor in breast cancer. J Mol Endocrinol, 52, 257-65. https://doi.org/10.1530/JME-14-0030
  16. Garay JP, Park BH (2012). Androgen receptor as a targeted therapy for breast cancer. Am J Cancer Res, 2, 434-45.
  17. Gasteiger E, Hoogland C, Gattiker A, et al (2005). Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook, Ed.Walker. Humana Press, 571-607.
  18. Ghazanfari T, Yaraee R, Rahmati B, et al (2011). In vitro cytotoxic effect of garlic extract on malignant and nonmalignant cell lines. Immunopharmacol Immunotoxicol, 33, 603-8. https://doi.org/10.3109/08923973.2011.551832
  19. Higa GM, Fell RG (2013). Sex hormone receptor repertoire in breast cancer. Int J Breast Cancer, 284036.
  20. Honorio KM, Moda TL, Andricopulo AD (2013). Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem, 9, 163-76. https://doi.org/10.2174/1573406411309020002
  21. Huang J, Yang B, Xiang T, et al (2015). Diallyl disulfide inhibits growth and metastatic potential of human triple-negative breast cancer cells through inactivation of the beta-catenin signaling pathway. Mol Nutr Food Res, 59, 1063-75. https://doi.org/10.1002/mnfr.201400668
  22. Kach J, Conzen SD, Szmulewitz RZ (2015). Targeting the glucocorticoid receptor in breast and prostate cancers. Sci Transl Med.
  23. Khokhar A (2012). Breast cancer in India: where do we stand and where do we go? Asian Pac J Cancer Prev, 13, 4861-6. https://doi.org/10.7314/APJCP.2012.13.10.4861
  24. Kim S, Thiessen PA, Bolton EE, et al (2016). Pub Chem substance and compound databases. Nucleic Acids Res, 44, 1202-13. https://doi.org/10.1093/nar/gkv951
  25. Kingsley-Kallesen M, Mukhopadhyay SS, Wyszomierski SL, et al (2002). The mineralocorticoid receptor may compensate for the loss of the glucocorticoid receptor at specific stages of mammary gland development. Mol Endocrinol, 16, 2008-18. https://doi.org/10.1210/me.2002-0103
  26. Kujawski J, Popielarska H, Myka A, et al (2012). The log P parameter as a molecular descriptor in the computer-aided drug design - an overview. Comput Methods Sci Technol, 18, 81-8. https://doi.org/10.12921/cmst.2012.18.02.81-88
  27. Leo JC, Guo C, Woon CT, et al (2004). Glucocorticoid and mineralocorticoid cross-talk with progesterone receptor to induce focal adhesion and growth inhibition in breast cancer cells. Endocrinol, 145, 1314-21. https://doi.org/10.1210/en.2003-0732
  28. Lipinski CA (2004). Lead and drug like compounds: the ruleof-five revolution. Drug Discov Today Technol, 1, 337-41.
  29. Lumachi F, Santeufemia DA, Basso SM (2015). Current medical treatment of estrogen receptor-positive breast cancer. World J Biol Chem, 6, 231-9. https://doi.org/10.4331/wjbc.v6.i3.231
  30. Modem S, Dicarlo SE, Reddy TR (2012). Fresh garlic extract induces growth arrest and morphological differentiation of MCF7 breast cancer cells. Genes Cancer, 3, 177-86. https://doi.org/10.1177/1947601912458581
  31. Oda A, Okayasu M, Kamiyama Y, et al (2007). Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein-ligand docking using Argus lab software. Bull Chem Soc Jap, 80, 1920-5. https://doi.org/10.1246/bcsj.80.1920
  32. Omoto Y, Iwase H (2015). Clinical significance of estrogen receptor beta in breast and prostate cancer from biological aspects. Cancer Sci, 106, 337-43. https://doi.org/10.1111/cas.12613
  33. Park S, Koo J, Park HS, et al (2010). Expression of androgen receptors in primary breast cancer. Ann Oncol, 21, 488-92. https://doi.org/10.1093/annonc/mdp510
  34. Qin C, Zhang C, Zhu F, et al (2014). Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res, 42, 21. https://doi.org/10.1093/nar/gkt1315
  35. Rose PW, Prlic A, Bi C, et al (2015). The RCSB protein data bank: views of structural biology for basic and applied research and education. Nucleic Acids Res, 43, 1118-23.
  36. Sever R, Glass CK (2013). Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives Biol, 5, 16709. https://doi.org/10.1101/cshperspect.a016709
  37. Smith DA, Di L, Kerns EH (2010). The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov, 9, 929-39. https://doi.org/10.1038/nrd3287
  38. Stierand K, Rarey M (2010). Drawing the PDB: protein-ligand complexes in two dimensions. ACS Medicinal Chemistry Letters, 1, 540-5. https://doi.org/10.1021/ml100164p
  39. Suleria HAR, Butt MS, Khalid N, et al (2015). Garlic (Allium sativum): diet based therapy of 21st century-a review. Asian Pac J Tropical Disease, 5, 271-8. https://doi.org/10.1016/S2222-1808(14)60782-9
  40. Tian S, Wang J, Li Y, et al (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2-10. https://doi.org/10.1016/j.addr.2015.01.009
  41. Tsubura A, Lai YC, Kuwata M, et al (2011). Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer Agents Med Chem, 11, 249-53. https://doi.org/10.2174/187152011795347441
  42. Usha T, Goyal AK, Lubna S, et al (2014). Identification of anticancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pac J Cancer Prev, 15, 10345-50.
  43. Veber DF, Johnson SR, Cheng HY, et al (2002). Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem, 45, 2615-23. https://doi.org/10.1021/jm020017n
  44. Voutsadakis IA (2016). Epithelial-Mesenchymal Transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med, 5, 11. https://doi.org/10.3390/jcm5010011
  45. Wu G, Robertson DH, Brooks CL, 3rd, et al (2003). Detailed analysis of grid-based molecular docking: a case study of CDOCKER-a CHARMm-based MD docking algorithm. J Comput Chem, 24, 1549-62. https://doi.org/10.1002/jcc.10306
  46. Xu HE (2015). Family reunion of nuclear hormone receptors: structures, diseases, and drug discovery. Acta Pharmacol Sin, 36, 1-2. https://doi.org/10.1038/aps.2014.140
  47. Zhang H, Wang K, Lin G, et al (2014). Antitumor mechanisms of S-allyl mercaptocysteine for breast cancer therapy. BMC Complement Altern Med, 14, 270. https://doi.org/10.1186/1472-6882-14-270