Diagnostic Performance of Whole-Body Diffusion-Weighted Imaging Compared to PET-CT Plus Brain MRI in Staging Clinically Resectable Lung Cancer

  • Usuda, Katsuo (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Sagawa, Motoyasu (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Maeda, Sumiko (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Motono, Nozomu (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Tanaka, Makoto (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Machida, Yuichiro (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Matoba, Takuma Matsui Munetaka (Department of Radiology, Kanazawa Medical University) ;
  • Watanabe, Naoto (Department of Radiology, Kanazawa Medical University) ;
  • Tonami, Hisao (Department of Radiology, Kanazawa Medical University) ;
  • Ueda, Yoshimichi (Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University) ;
  • Uramoto, Hidetaka (Department of Thoracic Surgery, Kanazawa Medical University)
  • Published : 2016.06.01

Abstract

Background: Precise staging of lung cancer is usually evaluated by PET-CT and brain MRI. Recently, however, whole-body diffusion-weighted magnetic resonance imaging (WB-DWI) has be applied. The aim of this study is to determine whether the diagnostic performance of lung cancer staging by WB-DWI is superior to that of PET-CT+brain MRI. Materials and Methods: PET-CT + brain MRI and WB-DWI were used for lung cancer staging before surgery with 59 adenocarcinomas, 16 squamous cell carcinomas and 6 other carcinomas. Results: PET-CT + brain MRI correctly identified the pathologic N staging in 67 patients (82.7%), with overstaging in 5 (6.2%) and understaging in 9 (11.1%), giving a staging accuracy of 0.827. WB-DWI correctly identified the pathologic N staging in 72 patients (88.9%), with overstaging in 1 (1.2%) and understaging in 8 patients (9.9%), giving a staging accuracy of 0.889. There were no significant differences in accuracies. PET-CT + brain MRI correctly identified the pathologic stages in 56 patients (69.1%), with overstaging in 7 (8.6%) and understaging in 18 (22.2%), giving a staging accuracy of 0.691. WB-DWI correctly identified the pathologic stages in 61 patients (75.3%), with overstaging in 4 (4.9%) and understagings in16(19.7%), giving a staging accuracy of 0.753. There were no significant difference in accuracies. Conclusions: Diagnostic efficacy of WB-DWI for lung cancer staging is equivalent to that of PET-CT + brain MRI.

Keywords

Lung cancer;staging;whole body diffusion-weighted magnetic resonance imaging;MRI;PET-CT

Acknowledgement

Supported by : Ministry of Education, Culture, Sports, Science and Technology, Japan

References

  1. Abdulqadhr G, Molin D, Astrom G, et al (2011). Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol, 52, 173-80. https://doi.org/10.1258/ar.2010.100246
  2. Cheran SK, Nielsen ND, Patz EFJr (2004). False-negative findings for primary lung tumors on FDG positron emission tomography. Staging and prognostic implications. AJR, 182, 1129-32. https://doi.org/10.2214/ajr.182.5.1821129
  3. Darge K, Jaramillo D, Siegel MJ (2008). Whole-body MRI in children: current status and future applications. Eur J Radiol, 68, 289-98. https://doi.org/10.1016/j.ejrad.2008.05.018
  4. Gong J, Cao W, Zhang Z, et al (2015). Diagnostic efficacy of whole-body diffusion-weighted imaging in the detection of tumour recurrence and metastasis by comparison with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography or computed tomography in patients with gastrointestinal cancer. Gastroenterol Rep, 3, 128-35. https://doi.org/10.1093/gastro/gou078
  5. Goo JM, Im JG, Do KH, et al (2000). Pulmonary tuberculoma evaluated by means of FDG PET. Findings in 10 cases. Radiol, 216, 117-21. https://doi.org/10.1148/radiology.216.1.r00jl19117
  6. Heusner TA, Kuemmel S, Koeninger A, et al (2010). Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging, 37, 1077-86. https://doi.org/10.1007/s00259-010-1399-z
  7. Higashi K, Ueda Y, Seki H, et al (1998). Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med, 39, 1016-20.
  8. International Union Against Cancer (2009). TNM classification of malignant tumours. 7th ed. NY: Wiley-Liss, 138-46.
  9. Jain V, Hasselquist S, Delaney MD (2011). PET scanning in sarcoidosis. Ann N Y Acad Sci, 1228, 46-58. https://doi.org/10.1111/j.1749-6632.2011.06075.x
  10. Kim HS, Lee KS, Ohno Y, et al (2015). PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J Magn Reson Imaging, 42, 247-60. https://doi.org/10.1002/jmri.24776
  11. Konishi J, Yamazaki K, Tsukamoto E, et al (2003). Mediastinal lymph node staging by FDG-PET in patients with nonsmall cell lung cancer: analysis of false-positive FDG-PET findings. Respirat, 70, 500-6. https://doi.org/10.1159/000074207
  12. Kosucu P, Tekinbas C, Erol M, et al (2009). Mediastinal lymph nodes. Assessment with diffusion-weighted MR imaging. J Magn Reson Imaging, 30, 292-7. https://doi.org/10.1002/jmri.21850
  13. Kwee TC, Takahara T, Ochiai R, et al (2009). Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol, 70, 409-17. https://doi.org/10.1016/j.ejrad.2009.03.054
  14. Lambregts DMJ, Maas M, Cappendijk VC, et al (2011). Wholebody diffusion-weighted magnetic resonance imaging: current evidence in oncology and potential role in colorectal cancer staging. Eur J Cancer, 47, 2107-16. https://doi.org/10.1016/j.ejca.2011.05.013
  15. Laurent V, Trausch G, Bruot O, et al (2010). Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol, 75, 376-83. https://doi.org/10.1016/j.ejrad.2009.04.059
  16. Le Bihan D, Breton E, Lallemand D, et al (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiol, 168, 497-505. https://doi.org/10.1148/radiology.168.2.3393671
  17. Li B, Li Q, Nie W, et al (2014). Diagnostic value of wholebody diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a metaanalysis. Eur J Radiol, 83, 338-44. https://doi.org/10.1016/j.ejrad.2013.11.017
  18. Lin WY, Hsu WH, Lim Kh, et al (2012). Role of preoperative PET-CT in assessing mediastinal and hilar lymph node status in early stage lung cancer. J Chin Med Assoc, 75, 203-8. https://doi.org/10.1016/j.jcma.2012.04.004
  19. Maturu VN, Agarwal R, Aggarwal AN, et al (2014). Dual-time point whole-body 18F-fluorodeoxyglucose PET/CT imaging in undiagnosed mediastinal lymphadenopathy: a prospective study of 117 patients with sarcoidosis and TB. Chest, 146, e216-20. https://doi.org/10.1378/chest.14-1827
  20. Michielsen K, Vergote I, Op de Beeck K, et al (2014). Wholebody MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol, 24, 889-901. https://doi.org/10.1007/s00330-013-3083-8
  21. Nomori H, Mori T, Ikeda K, et al (2008). Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thoracic Cardiovasc Surg, 135, 816-22. https://doi.org/10.1016/j.jtcvs.2007.10.035
  22. Nomori H, Watanabe K, Ohtsuka T, et al (2004). Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3cm in diameter, with special reference to the CT images. Lung Cancer, 45, 19-27. https://doi.org/10.1016/j.lungcan.2004.01.009
  23. Ohno Y, Koyama H, Onishi Y, et al (2008). Non-small cell lung cancer: whole-body MR examination for M-stage assessment - utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiol, 248, 643-54. https://doi.org/10.1148/radiol.2482072039
  24. Plathow C, Aschoff P, Lichy MP, et al (2008). Positron emission tomography/computed tomography and wholebody magnetic resonance imaging in staging of advanced nonsmall cell lung cancer--initial results. Invest Radiol, 43, 290-7. https://doi.org/10.1097/RLI.0b013e318163273a
  25. Schmidt GP, Baur-Melnyk A, Herzog P, et al (2005). Highresolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol, 40, 743-53. https://doi.org/10.1097/01.rli.0000185878.61270.b0
  26. Schmidt GP, Kramer H, Reiser MF, et al (2007). Wholebody magnetic resonance imaging and positron emission tomography-computed tomography in oncology. Top Magn Reson Imaging, 18, 193-202. https://doi.org/10.1097/RMR.0b013e318093e6bo
  27. Schmidt GP, Reiser MF, Baur-Melnyk A (2009). Wholebody MRI for the staging and follow-up of patients with metastasis. Eur J Radiol, 70, 393-400. https://doi.org/10.1016/j.ejrad.2009.03.045
  28. Sommer G, Wiese M, Winter L, et al (2012). Preoperative staging of non-small-cell lung cancer: comparison of wholebody diffusion-weighted magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol, 22, 2859-67. https://doi.org/10.1007/s00330-012-2542-y
  29. Stecco A, Romano G, Negru M, et al (2009). Whole-body diffusion-weighted magnetic resonance imaging in the staging of oncological patients: comparison with positron emission tomography computed tomography (PET-CT) in a pilot study. Radiol Med, 114, 1-17. https://doi.org/10.1007/s11547-008-0348-4
  30. Takano A, Oriuchi N, Tsushima Y, et al (2008). Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging: comparison with $^{18}F$-FDG positron emission tomography and $^{123}I$-MIBG scintigraphy. Ann Nucl Med, 22 , 395-401. https://doi.org/10.1007/s12149-008-0128-1
  31. Takenaka D, Ohno Y, Matsumoto K, et al (2009). Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging, 30, 298-308. https://doi.org/10.1002/jmri.21858
  32. Usuda K, Maeda S, Motono N, et al (2015). Diagnostic Performance of Diffusion-Weighted Imaging for Multiple Hilar and Mediastinal Lymph Nodes with FDG Accumulation. Asian Pac J Cancer Prev, 16, 6401-6 https://doi.org/10.7314/APJCP.2015.16.15.6401
  33. Usuda K, Sagawa M, Motono N, et al (2014). Diagnostic performance of diffusion weighted imaging of malignant and benign pulmonary nodules and masses. Comparison with positron emission tomography. Asian Pac J Cancer Prev, 15, 4629-35. https://doi.org/10.7314/APJCP.2014.15.11.4629
  34. Usuda K, Sagawa M, Motono N, et al (2013). Advantages of diffusion-weighted imaging over positron emission tomography-computed tomography in assessment of hilar and mediastinal lymph node in lung cancer. Ann Surg Oncol, 20, 1676-83. https://doi.org/10.1245/s10434-012-2799-z
  35. Usuda K, Zhao XT, Sagawa M, et al (2011). Diffusion-weighted imaging is superior to PET in the detection and nodal assessment of lung cancers. Ann Thorac Surg, 91, 1689-95. https://doi.org/10.1016/j.athoracsur.2011.02.037
  36. van Ufford HME, Kwee TC, Beek FJ, et al (2011). Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with $^{18}F$-FDG PET/CT. AJR Am J Roentgenol, 196, 662-9. https://doi.org/10.2214/AJR.10.4743
  37. Xue HD, Li S, Sun HY, et al (2008). Experimental study of inflammatory and metastatic lymph nodes with diffusion weighted imaging on animal model: comparison with conventional methods. Chin Med Sci J, 23, 166-71. https://doi.org/10.1016/S1001-9294(09)60033-X