DOI QR코드

DOI QR Code

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Dangol, Sarmina (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Chen, Yafei (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Choi, Jihyun (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Cho, Yoon-Seong (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Lee, Jea-Eun (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Choi, Mi-Ok (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Jwa, Nam-Soo (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
  • Received : 2016.04.08
  • Accepted : 2016.04.14
  • Published : 2016.05.31

Abstract

Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

Keywords

AVR-effectors;gene-for-gene interaction;NADP-Malic enzyme;reactive oxygen species;rice

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Able, A.J. (2003). Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221, 137-143. https://doi.org/10.1007/s00709-002-0064-1
  2. Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M., Katou, Y., Yaeno, T., Shirasu, K., and Yoshioka, H. (2015). WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27, 2645-2663. https://doi.org/10.1105/tpc.15.00213
  3. Akamatsu, A., Wong, H.L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., Imai, K., Umemura, K., Kawasaki, T., Kawano, Y., and Shimamoto, K. (2013). An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitininduced rice immunity. Cell Host Microbe 13, 465-476. https://doi.org/10.1016/j.chom.2013.03.007
  4. Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., et al. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25, 1463-1481. https://doi.org/10.1105/tpc.112.107201
  5. Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T., and Dodds, P.N. (2014a). A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis. Front. Plant Sci. 5, 606.
  6. Cesari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., Shimamoto, K., Dodds, P., Terauchi, R., and Kroj, T. (2014b). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 33, 1941-1959. https://doi.org/10.15252/embj.201487923
  7. Chi, W., Yang, J., Wu, N., and Zhang, F. (2004). Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci. Biotechnol. Biochem. 68, 1865-1874. https://doi.org/10.1271/bbb.68.1865
  8. Chi, M.H., Park, S.Y., Kim, S., and Lee, Y.H. (2009). A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5, e1000401. https://doi.org/10.1371/journal.ppat.1000401
  9. Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. (2013). Pivoting the plant imuune system from dissection to deployment. Science 341, 746-751. https://doi.org/10.1126/science.1236011
  10. Dean, P. (2011). Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 35, 1100-1125. https://doi.org/10.1111/j.1574-6976.2011.00271.x
  11. Detarsio, E., Andreo, C.S., and Drincovich, M.F. (2004). Basic residues play key roles in catalysis and $NADP^+$-specificity in maize (Zea mays L.) photosynthetic $NADP^+$-dependent malic enzyme. Biochem. J. 382, 1025-1030. https://doi.org/10.1042/BJ20040594
  12. Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A.R., Feussner, I., et al. (2011). Metabolic priming by a secreted fungal effector. Nature 478, 395-398. https://doi.org/10.1038/nature10454
  13. Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D., and Kahmann, R. (2009). Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 5, e1000290. https://doi.org/10.1371/journal.ppat.1000290
  14. Doke, N. (1983). Involvement of superoxide anion genertaion in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23, 345-357. https://doi.org/10.1016/0048-4059(83)90019-X
  15. Edwards, G.E., and Andreo, C.S. (1992). NADP-malic enzyme from plants. Phytochemistry 31, 1845-1857. https://doi.org/10.1016/0031-9422(92)80322-6
  16. Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., and Gurr, S.J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186-194. https://doi.org/10.1038/nature10947
  17. Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296. https://doi.org/10.1146/annurev.py.09.090171.001423
  18. Fujisaki, K., Abe, Y., Ito, A., Saitoh, H., Yoshida, K., Kanzaki, H., Kanzaki, E., Utsushi, H., Yamashita, T., Kamoun, S., et al. (2015). Rice Exo70 interacts with a fungal effector, AVR-Pii and is required for AVR-Pii-triggered immunity. Plant J. 83, 875-887. https://doi.org/10.1111/tpj.12934
  19. Gabriel, D.W., and Rolfe, B.G. (1990). Working models of specific recognition in plant-mirocbe interactions. Annu. Rev. Phytopathol. 28, 365-391. https://doi.org/10.1146/annurev.py.28.090190.002053
  20. Gehl, C., Waadt, R., Kudla, J., Mendel, R.R., and Hansch, R. (2009). New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Mol. Plant 2, 1051-1058. https://doi.org/10.1093/mp/ssp040
  21. Giraldo, M.C., and Valent, B. (2013). Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11, 800-814. https://doi.org/10.1038/nrmicro3119
  22. Giraldo, M.C., Dagdas, Y.F., Gupta, Y.K., Mentlak, T.A., Yi, M., Martinez-Rocha, A.L., Saitoh, H., Terauchi, R., Talbot, N.J., and Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4, 1996. https://doi.org/10.1038/ncomms2996
  23. Gohre, V., and Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189-215. https://doi.org/10.1146/annurev.phyto.46.120407.110050
  24. Grant, J.J., and Loake, G.J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124, 21-29. https://doi.org/10.1104/pp.124.1.21
  25. Greenberg, J.T., and Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol. 6, 201-211. https://doi.org/10.1111/j.1462-5822.2004.00361.x
  26. Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M., and Doehlemann, G. (2012). The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 8, e1002684. https://doi.org/10.1371/journal.ppat.1002684
  27. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570. https://doi.org/10.1046/j.1365-313x.2000.00767.x
  28. Jeon, J., Goh, J., Yoo, S., Chi, M.H., Choi, J., Rho, H.S., Park, J., Han, S.S., Kim, B.R., Park, S.Y., et al. (2008). A putative MAP kinase kinase kinase, MCK1, is requried for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant Microbe Interact. 21, 525-534. https://doi.org/10.1094/MPMI-21-5-0525
  29. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D., Shirasu, K., Menke, F., Jones, A., et al. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43-55. https://doi.org/10.1016/j.molcel.2014.02.021
  30. Kadota, Y., Shirasu, K., and Zipfel, C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56, 1472-1480. https://doi.org/10.1093/pcp/pcv063
  31. Kankanala, P., Czymmek, K., and Valent, B. (2007). Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706-724. https://doi.org/10.1105/tpc.106.046300
  32. Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., Satoh, H., and Shimamoto, K. (1999). The small GTP-binding protein Rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA 96, 10922-10926. https://doi.org/10.1073/pnas.96.19.10922
  33. Khang, C.H., Berruyer, R., Giraldo, M.C., Kankanala, P., Park, S.Y., Czymmek, K., Kang, S., and Valent, B. (2010). Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388-1403. https://doi.org/10.1105/tpc.109.069666
  34. Kim, J.A., Cho, K., Singh, R., Jung, Y.H., Jeong, S.H., Kim, S.H., Lee, J., Cho, Y.S., Agrawal, G.K., Rakwal, R., et al. (2009). Rice OsACDR1 (Oryzae sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol. Cells 28, 431-439. https://doi.org/10.1007/s10059-009-0161-5
  35. Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189. https://doi.org/10.1038/nri1312
  36. Lara, M.V., Drincovich, M.F., Muller, G.L., Maurino, V.G., and Andreo, C.S. (2005). NADP-malic enzyme and Hsp70: copurification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70. Plant Cell Physiol. 46, 997-1006. https://doi.org/10.1093/pcp/pci108
  37. Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593. https://doi.org/10.1016/0092-8674(94)90544-4
  38. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., et al. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338. https://doi.org/10.1016/j.chom.2014.02.009
  39. Liu, J., Wang, X., Mitchell, T., Hu, Y., Liu, X., Dai, L., and Wang, G.L. (2010). Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol. Plant Pathol. 11, 419-427. https://doi.org/10.1111/j.1364-3703.2009.00607.x
  40. Maciel, J.L., Ceresini, P.C., Castroagudin, V.L., Zala, M., Kema, G.H., and McDonald, B.A. (2014). Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104, 95-107. https://doi.org/10.1094/PHYTO-11-12-0294-R
  41. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. and Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389. https://doi.org/10.1016/S0092-8674(03)00040-0
  42. Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C.E., Uemura, A., Kanzaki, H., Kamoun, S., Terauchi, R., and Banfield, M.J. (2015). Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. Elife 4.
  43. Marino, D., Dunand, C., Puppo, A., and Pauly, N. (2012). A burst of plant NADPH oxidases. Trends Plant Sci. 17, 9-15. https://doi.org/10.1016/j.tplants.2011.10.001
  44. McHale, L., Tan, X., Koehl, P., and Michelmore, R.W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7, 212.
  45. Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., and Valent, B. (2009). Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21, 1273-1290. https://doi.org/10.1105/tpc.107.055228
  46. Nakashima, A., Chen, L., Thao, N.P., Fujiwara, M., Wong, H.L., Kuwano, M., Umemura, K., Shirasu, K., Kawasaki, T., and Shimamoto, K. (2008). RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell 20, 2265-2279. https://doi.org/10.1105/tpc.107.054395
  47. Ono, E., Wong, H.L., Kawasaki, T., Hasegawa, M., Kodama, O., and Shimamoto, K. (2001). Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98, 759-764. https://doi.org/10.1073/pnas.98.2.759
  48. Park, C.H., Chen, S., Shirsekar, G., Zhou, B., Khang, C.H., Songkumarn, P., Afzal, A.J., Ning, Y., Wang, R., Bellizzi, M., et al. (2012). The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogenassociated molecular pattern-triggered immunity in rice. Plant Cell 24, 4748-4762. https://doi.org/10.1105/tpc.112.105429
  49. Park, S.Y., Jeong, M.H., Wang, H.Y., Kim, J.A., Yu, N.H., Kim, S., Cheong, Y.H., Kang, S., Lee, Y.H., and Hur, J.S. (2013). Agrobacterium tumefaciens-mediated transformation of the lichen fungus, Umbilicaria muehlenbergii. PLoS One 8, e83896. https://doi.org/10.1371/journal.pone.0083896
  50. Parker, D., Beckmann, M., Zubair, H., Enot, D.P., Caracuel-Rios, Z., Overy, D.P., Snowdon, S., Talbot, N.J., and Draper, J. (2009). Metabolomic analysis reveals a common pattern of metabolic reprogramming during invasion of three host plant species by Magnaporthe grisea. Plant J. 59, 723-737. https://doi.org/10.1111/j.1365-313X.2009.03912.x
  51. Piedras, P., Hammond-Kosack, K.E., and Jones, J.D.G. (1998). Rapid, Cf-9-and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol. Plant Microbe Interact. 11, 1155-1166. https://doi.org/10.1094/MPMI.1998.11.12.1155
  52. Pogany, M., von Rad, U., Grun S., Dongo, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., and Durner, J. (2009). Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol. 151, 1459-1475. https://doi.org/10.1104/pp.109.141994
  53. Sharma, S., Sharma, S., Hirabuchi, A., Yoshida, K., Fujisaki, K., Ito, A., Uemura, A., Terauchi, R., Kamoun, S., Sohn, K.H., et al. (2013). Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant J. 74, 701-712. https://doi.org/10.1111/tpj.12148
  54. Shaw, S.L. (2003). Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol. 132, 2196-2204. https://doi.org/10.1104/pp.103.021113
  55. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., et al. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64, 204-214. https://doi.org/10.1111/j.1365-313X.2010.04324.x
  56. Singh, R., Lee, M.O., Lee, J.E., Choi, J., Park, J.H., Kim, E.H., Yoo, R.H., Cho, J.I., Jeon, J.S., Rakwal, R., et al. (2012). Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160, 477-487. https://doi.org/10.1104/pp.112.200071
  57. Singh, R., Dangol, S., and Jwa, N.S. (2014a). Yeast two-hybrid system for dissecting the rice MAPK interactome. Methods Mol. Biol. 1171, 195-216. https://doi.org/10.1007/978-1-4939-0922-3_16
  58. Singh, R., Lee, J.E., Dangol, S., Choi, J., Yoo, R.H., Moon, J.S., Shim, J.K., Rakwal, R., Agrawal, G.K., and Jwa, N.S. (2014b). Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system. Proteomics 14, 105-115. https://doi.org/10.1002/pmic.201300125
  59. Stael, S., Kmiecik, P., Willems, P., Van Der Kelen, K., Coll, N.S., Teige, M., and Van Breusegem, F. (2015). Plant innate immunity-sunny side up? Trends Plant Sci. 20, 3-11. https://doi.org/10.1016/j.tplants.2014.10.002
  60. Tanaka, S., Brefort, T., Neidig, N., Djamei, A., Kahnt, J., Vermerris, W., Koenig, S., Feussner, K., Feussner, I., and Kahmann, R. (2014). A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. Elife 3, e01355.
  61. Torres, M.A., Jones, J.D., and Dangl, J.L. (2005). Pathogeninduced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37, 1130-1134. https://doi.org/10.1038/ng1639
  62. Torres, M.A., Jones, J.D., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378. https://doi.org/10.1104/pp.106.079467
  63. Valent, B., and Khang, C.H. (2010). Recent advances in rice blast effector research. Curr. Opin. Plant. Biol. 13, 434-441. https://doi.org/10.1016/j.pbi.2010.04.012
  64. van der Hoorn, R.A., and Kamoun, S. (2008). From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017. https://doi.org/10.1105/tpc.108.060194
  65. Voll, L.M., Zell, M.B., Engelsdorf, T., Saur, A., Wheeler, M.G., Drincovich, M.F., Weber, A.P., and Maurino, V.G. (2012). Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol. 195, 189-202. https://doi.org/10.1111/j.1469-8137.2012.04129.x
  66. Wang, W., Wen, Y., Berkey, R., and Xiao, S. (2009). Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21, 2898-2913. https://doi.org/10.1105/tpc.109.067587
  67. Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., Chen, Z., Gu, H., Li, C., Qin, G., et al. (2013). Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One 8, e59720. https://doi.org/10.1371/journal.pone.0059720
  68. Wheeler, M.C., Tronconi, M.A., Drincovich, M.F., Andreo, C.S., Flugge, U.I., and Maurino, V.G. (2005). A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol. 139, 39-51. https://doi.org/10.1104/pp.105.065953
  69. Williams, S.J., Sohn, K.H., Wan, L., Bernoux, M., Sarris, P.F., Segonzac, C., Ve, T., Ma, Y., Saucet, S.B., Ericsson, D.J., et al. (2014). Structural basis for assembly and function of heterodimeric plant immune receptor. Science 344, 299-303. https://doi.org/10.1126/science.1247357
  70. Wong, H.L., Sakamoto, T., Kawasaki, T., Umemura, K., and Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 135, 1447-1456. https://doi.org/10.1104/pp.103.036384
  71. Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., et al. (2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573-1591. https://doi.org/10.1105/tpc.109.066324
  72. Zhang, S., Wang, L., Wu, W., He, L., Yang, X., and Pan, Q. (2015). Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci. Rep. 5, 11642. https://doi.org/10.1038/srep11642

Cited by

  1. Analysis of microRNA profiles in patients with melanocytic skin neoplasms vol.6, pp.1, 2017, https://doi.org/10.17116/onkolog20176123-27
  2. The effector AvrRxo1 phosphorylates NAD in planta vol.13, pp.6, 2017, https://doi.org/10.1371/journal.ppat.1006442
  3. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae vol.34, 2016, https://doi.org/10.1016/j.mib.2016.10.001
  4. Taking the stage: effectors in the spotlight vol.38, 2017, https://doi.org/10.1016/j.pbi.2017.04.013
  5. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis vol.8, 2017, https://doi.org/10.3389/fpls.2017.00211