Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes

  • Kalyani, Ruthala (Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Ji-Yeon (Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Min, Hyehyun (Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Yoon, Heejei (Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine) ;
  • Kim, Myoung Hee (Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
  • Received : 2015.11.12
  • Accepted : 2016.02.15
  • Published : 2016.05.31


Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following $TGF-{\beta}2$ treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.


coexpressed genes;Hox genes;in silico analysis;pattern formation;vertebrate development


Supported by : National Research Foundation


  1. Chung, H.J., Lee, J.Y., Deocaris, C.C., Min, H., Kim, S.H., and Kim, M.H. (2010). Mouse homologue of the schizophrenia susceptibility gene ZNF804A as a target of Hoxc8. J. Biomed. Biotechnol. 2010, 231708.
  2. Daley, W.P., and Yamada, K.M. (2013). ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr. Opin. Genet. Dev. 23, 408-414.
  3. Du, B., Cawthorn, W.P., Su, A., Doucette, C.R., Yao, Y., Hemati, N., Kampert, S., McCoin, C., Broome, D.T., Rosen, C.J., et al. (2013). The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factorbeta (TGFbeta) signaling. J. Biol. Chem. 288, 3036-3047.
  4. Fata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie-Sasaki, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B., Lacey, D.L., et al. (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41-50.
  5. Ferguson, J.W., Mikesh, M.F., Wheeler, E.F., and LeBaron, R.G. (2003). Developmental expression patterns of Beta-ig (betaIGH3) and its function as a cell adhesion protein. Mech. Dev. 120, 851-864
  6. Hueber, S.D., and Lohmann, I. (2008). Shaping segments: Hox gene function in the genomic age. Bioessays 30, 965-979.
  7. Hullinger, T.G., Pan, Q., Viswanathan, H.L., and Somerman, M.J. (2001). TGF beta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp. Cell Res. 262, 69-74.
  8. Kikugawa, T., Kinugasa, Y., Shiraishi, K., Nanba, D., Nakashiro, K., Tanji, N., Yokoyama, M., and Higashiyama, S. (2006). PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate 66, 1092-1099.
  9. Kim, S.H., Park, J., Choi, M.C., Kim, H.P., Park, J.H., Jung, Y., Lee, J.H., Oh, D.Y., Im, S.A., Bang, Y.J., et al. (2007). Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem. Biophys. Res. Commun. 355, 318-323.
  10. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos. A.J., Van, G., Itie, A., et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323.
  11. Kruger, C., and Kappen, C. (2010). Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice. PLoS One 5, e8978.
  12. Kwon, Y., Ko, J.H., Kim, B.G., and Kim, M.H. (2003). Analysis of plausible downstream target genes of Hoxc8 in F9 teratocarcinoma cells. Mol. Biol. Rep. 30, 141-148.
  13. Kwon, Y., Shin, J., Park, H.W., and Kim, M.H. (2005). Dynamic expression pattern of Hoxc8 during mouse early embryogenesis. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 283, 187-192.
  14. Ladam, F., and Sagerstrom, C.G. (2014). Hox regulation of transcription: More complex(es). Dev. Dyn. 243, 4-15
  15. LeDoux, M.S., Xu, L., Xiao, J., Ferrell, B., Menkes, D.L., and Homayouni, R. (2006). Murine central and peripheral nervous system transcriptomes: comparative gene expression. Brain Res. 1107, 24-41.
  16. Le Mouellic, H., Lallemand, Y., and Brulet, P. (1992). Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69, 251-264.
  17. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., and Pavlidis, P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Res. 14, 1085-1094.
  18. Lei, H., Wang, H., Juan, A.H., and Ruddle, F.H. (2005) The identification of Hoxc8 target genes. Proc. Natl. Acad. Sci. USA 102, 2420-2424.
  19. Lei, H., Juan, A.H., Kim, M.S., and Ruddle, F.H. (2006). Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells. Proc. Natl. Acad. Sci. USA 103, 10305-10309.
  20. Li, X., Nie, S., Chang, C., Qiu, T., and Cao, X. (2006). Smads oppose Hox transcriptional activities. Exp. Cell Res. 312, 854-864.
  21. Li, X., Madison, B.B., Zacharias, W., Kolterud, A., States, D., and Gumucio, D.L. (2007). Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk. Physiol. Genomics 29, 290-301.
  22. Mann, R.S. (1995). The specificity of homeotic gene function. Bioessays 17, 855-863.
  23. Mann, R.S., and Chan, S.K. (1996). Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 12, 258-262.
  24. Mann, R.S., and Affolter, M. (1998). Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8, 423-429.
  25. Min, H., Lee, J.Y., Bok, J., Chung, H.J., and Kim, M.H. (2010). Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8. Biochem. Biophys. Res. Commun. 392, 543-547.
  26. Min, H., Lee, J.Y., and Kim, M.H. (2012). Structural dynamics and epigenetic modifications of Hoxc loci along the anteroposterior body axis in developing mouse embryos. Int. J. Biol. Sci. 8, 802-810.
  27. Min, H., Lee, J.Y., and Kim, M.H. (2013). Hoxc gene collinear expression and epigenetic modifications established during embryogenesis are maintained until after birth. Int. J. Biol. Sci. 9, 960-965.
  28. Moens, C.B., and Selleri, L. (2006). Hox cofactors in vertebrate development. Dev. Biol. 291, 193-206.
  29. Pearson, J.C., Lemons, D., and McGinnis, W. (2005). Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893-904.
  30. Price, M.N., and Rieffel, E. (2004). Finding coexpressed genes in counts-based data: an improved measure with validation experiments. Bioinformatics 20, 945-952.
  31. Qi, B., Newcomer, R.G., and Sang, Q.X. (2009). ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr. Pharm. Des. 15, 2336-2348.
  32. Ruthala, K., Gadi, J., Lee, J.Y., Yoon, H., Chung, H.J., and Kim, M.H. (2011). Hoxc8 downregulates Mgl1 tumor suppressor gene expression and reduces its concomitant function on cell adhesion. Mol. Cells 32, 273-279.
  33. Schorderet, D.F., Menasche, M., Morand, S., Bonnel, S., Buchillier, V., Marchant, D., Auderset, K., Bonny, C., Abitbol, M., and Munier, F.L. (2000). Genomic characterization and embryonic expression of the mouse Bigh3 (Tgfbi) gene. Biochem. Biophys. Res. Commun. 274, 267-274.
  34. Shi, X., Yang, X., Chen, D., Chang, Z., and Cao, X. (1999). Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J. Biol. Chem. 274, 13711-13717.
  35. Shimamoto, T., Tang, Y., Naot, Y., Nardi, M., Brulet, P., Bieberich, C.J., and Takeshita, K. (1999). Hematopoietic progenitor cell abnormalities in Hoxc-8 null mutant mice. J. Exp. Zool. 283, 186-193.<186::AID-JEZ9>3.0.CO;2-0
  36. Skonier, J., Bennett, K., Rothwell, V., Kosowski, S., Plowman, G., Wallace, P., Edelhoff, S., Disteche, C., Neubauer, M., Marquardt, H., et al. (1994). beta ig-h3: a transforming growth factor-betaresponsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol. 13, 571-584.
  37. Timmons, J.A., Wennmalm, K., Larsson, O., Walden, T.B., Lassmann, T., Petrovic, N., Hamilton, D.L., Gimeno, R.E., Wahlestedt, C., Baar, K., et al. (2007). Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA 104, 4401-4406.
  38. Tiret, L., Le Mouellic, H., Maury, M., and Brulet, P. (1998). Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125, 279-291.
  39. Yang, X., Ji, X., Shi, X., and Cao, X. (2000). Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J. Biol. Chem. 275, 1065-1072.
  40. Yueh, Y.G., Gardner, D.P., and Kappen, C. (1998). Evidence for regulation of cartilage differentiation by the homeobox gene Hoxc-8. Proc. Natl. Acad. Sci. USA 95, 9956-9961.

Cited by

  1. HOXC8 regulates self-renewal, differentiation and transformation of breast cancer stem cells vol.16, pp.1, 2017,