DOI QR코드

DOI QR Code

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment

서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석

  • Joo, Jongmin (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Kim, Jonguk (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Ko, Youngtak (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Kim, Seung-Sep (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Son, Juwon (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Pak, Sang Joon (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Ham, Dong-Jin (Deep-sea and Seabed Resources Research Division, KIOST) ;
  • Son, Seung Kyu (Deep-sea and Seabed Resources Research Division, KIOST)
  • 주종민 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김종욱 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 고영탁 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김승섭 (충남대학교 지질환경과학과) ;
  • 손주원 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 박상준 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 함동진 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 손승규 (한국해양과학기술원 심해저광물자원연구센터)
  • Received : 2016.01.13
  • Accepted : 2016.04.15
  • Published : 2016.04.28

Abstract

We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

Acknowledgement

Supported by : 한국해양과학기술원

References

  1. APL-UW (1997) High Frequency Ocean Environmental Acoustic Models Handbook, Technical Report APL-UW TR-9407, Applied Physics Laboratory, University of Washington, Seattle, p.21-49.
  2. Blondel, P. and Murtion, B.J. (2009) The handbook of sidescan sonar, Springer Verlag, p.15-18.
  3. Beyer, A., Charkraboty, B. and Schenke, H.W. (2007) Seafloor classification of the mound and channel provinces of the Porcupine Seabight: and application of the multibeam angular backscatter data, Int J Earth Sci (Geol Rundsch). v.96, p.11-20. https://doi.org/10.1007/s00531-005-0022-1
  4. Caress, D.W. and Chayes, D.N. (1995) New software for processing sidescan data from sidescan-capable multibeam sonars. In: Proceedings of the OCEANS 95 MTS/ IEEE Conference on Challenges of our Changing Global Environment, San Diego, CA. p.997-1000.
  5. Fonseca, L. and Calder, B. (2005) Geocoder: an efficient backscatter map constructor. Proceedings of the U.S. Hydrographic Conference 2005, San Diego, p.1-9
  6. Fonsenca, L. and Mayer, L. (2007) Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data, Mar Geophys Res., v.28, p.119-126. https://doi.org/10.1007/s11001-007-9019-4
  7. Fonseca, L., Brown, C., Calder, B.R., Mayer, L.A. and Rzhanov, Y. (2009) Angular range analysis of acoustic themes from Stanton Banks, Ireland: a link between visual interpretation and multibeam echosounder angular signatures. Applied Acoustics, v.70, p.1298-1304. https://doi.org/10.1016/j.apacoust.2008.09.008
  8. Fox, C.G. and Hayes, D.E (1985) Quantitative methods for analyzing the roughness of the seafloor, Rev. Geophys., v.23, n.1, p.1-48 https://doi.org/10.1029/RG023i001p00001
  9. Glasby, G.P., Ren, R., Ahi, X. and Pulyaeva, I.A. (2007) Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time. Geo-Marine Letters, v.27, p.315-323. https://doi.org/10.1007/s00367-007-0055-5
  10. Heap, A.D., Hughes, M.G., Anderson, T., Nichol, S.L. and Daniell, J.J. (2009) Seabed Environments and Subsurface Geology of the Capel-Faust Basins and Gifford Guyot, Eastern Australia - TAN0713 Post-survey Report. Record 2009/022. Geoscience Australia, Canberra, p.16-21.
  11. Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J.-K. and Lubik, N. (1997) Iron and manganese oxide mineralization in the Pacific. In Nicholson, K. et al. (eds.) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society Special Publication 119, London, p.123-138.
  12. Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.-K. and Roberts, L. (2000) Cobalt-rich ferromanganese crusts in the Pacific. In Cronan, D.S. (ed.) Handbook of Marine Mineral Deposits. CRC Press, Boca Raton, p.239-279.
  13. Hein, J.R., Conrad, T.A. and Dunham, R.E. (2009) Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Mar. Georesour. Geotechnol. v.27, p.160-176. https://doi.org/10.1080/10641190902852485
  14. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A. (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, v.51, p.1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
  15. Kim, J., Ko, Y.T., Hyeong, K. and Moon, J.W. (2013) Geophysical and Geologcial Exploration of cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific. Econ. Environ. Geol., v.46, n.6, p.569-580. https://doi.org/10.9719/EEG.2013.46.6.569
  16. MOMAF (2005) A report on 2005 deep seabed mineral resources exploration, MOMAF, v.5, p.3-42.
  17. Kojima, K. (1999) Report on the cobalt-rich manganese crust resources in the waters of the republic of the marshall islands: based on the results of the cooperation study project on the deepsea mineral resources in selected offshore areas of the SOPAC region. SOPAC technical report 293, p.4-7.
  18. Lee, G.C., Ko. Y., Yoo, C.M., Chi, S.B., Kim. J. and Ham, D.J (2005) Review on underwater positioning for deep towing vehicles, ocean and poloar Research, v.27, n.3, p.335-339. https://doi.org/10.4217/OPR.2005.27.3.335
  19. Lee, T.G., Lee, K.H., Hein, J.R. and Moon, J.W. (2009) Geophyiscal investigation of seamounts near the Ogasawara Fracture Zone, western Pacific, Earth Planets Space, v.61, p.319-331. https://doi.org/10.1186/BF03352914
  20. Linconln, J.M, Pringle, M.S. and Silva, I.P. (1993) Early and Late Cretaceous Volcanism and Reef-Building in the Marshall Islands. In : Pringle, M.S., Sager, W.W., Silter, W.V and Stein, S. (eds), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophical Mogograph, 77, American Geophysical Union, Washington, D.C., p.279-305.
  21. Park, Y., Lee, S., Seo, W.J., Gong, G.S., Han, H. and Park, S. (2008) Surfical sediment classification using Backscattered Amplitude Imagery of Multibeam Echo sounder(300 kHz), Econ. Environ. Geol., v.41, n.6, p.747-761.
  22. Roberts, J.M., Brown, C.J., Long, D.C. and Bates, R. (2005) Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats, Coral Reef, v.24, p.654-669. https://doi.org/10.1007/s00338-005-0049-6
  23. Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J. and Zemsky, R. (2009) Global Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst., v.10, Q03014, doi: 10.1029/2008GC002332 https://doi.org/10.1029/2008GC002332
  24. Stewart, W.K., Chu, D., Malik, S., Lerner, S. and Singh, H. (1994) Quantitative seafloor characterization using a bathymetric sidescan sonar, IEEE. Jour. Oceanic Eng., v.19, n.4, p.599-610. https://doi.org/10.1109/48.338396
  25. Thornton, B., Asada, A., Bodernmann, A., Sangekar, M., Ura, T. (2013) Instruments and Methods for Acoustic and Visual survey of manganese cursts, IEEE J. Oceanic Eng., v.38, p.186-203. https://doi.org/10.1109/JOE.2012.2218892
  26. Usui, A. and Okamoto, N. (2010) Geophysical and geological exploration of Cobalt-rich ferromanganese crusts: An attempt of small-scale mapping on a Micronesian seamount. Marine Georesources and Geotechnology, v.28, p.192-206. https://doi.org/10.1080/10641190903521717

Cited by

  1. An integrated method for the quantitative evaluation of mineral resources of cobalt-rich crusts on seamounts vol.84, 2017, https://doi.org/10.1016/j.oregeorev.2017.01.011