Comparison of the Antioxidant Activities and Nitrite Scavenging Activity of Black Chokeberry (Aronia melanocarpa) Extracts

블랙 초크베리 추출물의 항산화 활성 및 아질산염 소거 활성

  • Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University) ;
  • Shin, Ji-Moon (Natural Resources and Science, Pusan National University) ;
  • Seong, Jong-Hwan (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Geun (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science and Technology, Pusan National University) ;
  • Chung, Hun-Sik (Department of Food Science and Technology, Pusan National University) ;
  • Jang, Seong-Ho (Department of Bio-Environmental Energy, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • 진동혁 (부산대학교 식품공학과) ;
  • 신지문 (부산대학교 생명자원과학대학) ;
  • 성종환 (부산대학교 식품공학과) ;
  • 이영근 (부산대학교 식품공학과) ;
  • 김동섭 (부산대학교 식품공학과) ;
  • 정헌식 (부산대학교 식품공학과) ;
  • 장성호 (부산대학교 바이오환경에너지학과) ;
  • 김한수 (부산대학교 식품공학과)
  • Received : 2016.03.04
  • Accepted : 2016.03.30
  • Published : 2016.04.30


The purpose of this study was to measure the antioxidant activity and bioactivity of black chokeberry (Aronia melanocarpa). The black chokeberry was known to contain many physiologically active substance, such as ascorbic acid, anthocyanin, quercetin. We extracted black chokeberry powder from four solvents such as chloroform:methanol(CM, 2:1, v/v), distilled water (DW), 70% ethanol, 70% methanol. After that, we determined anthocyanin, total phenol, flavonoid content, DPPH radical scavenging activity, ABTS radical scavenging activity, ferric reducing antioxidant power, reducing power and Nitrite scavenging activity of black chokeberry extracts and as results of comparing each extract. respectively. From the above results shows that antioxidant activity and bioactivity of black chokeberry extracts was the highest in 70% methanol (p<0.05). The results suggest that black chokeberry can be used as nutraceutical foods and natural antioxidant.


Black chokeberry (Aronia melanocarpa);Antioxidant activity;Anthocyanin;Total phenol;Flavonoid


Supported by : 부산대학교


  1. Blois, M. S., 1958, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200.
  2. Bokov, A., Chaudhuri, A., Richardson, A., 2004, The role of oxidative damage and stress in aging, Mech. Ageing Dev., 125, 811-826.
  3. Bolling, B. W., Taheri, R., Pei, R., Kranz, S., Yu, M., Durocher, S. N., Brand, M. H., 2015, Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability, Food Chem., 187, 189-196.
  4. Bravo, L., 1998, Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance, Nutr, Rev., 56, 317-333.
  5. Carlsen, M. H., Halvorsen, B. L., Holte, K., Bohn, S. K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo, I., Berhe, N., Willett, W. C., Phillips, K. M., Jacobs, D. R., Blomhoff, R., 2010, The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide, Nutrition Journal, 9, 1.
  6. Droge, W., 2002, Free radicals in the physiological control of cell function, Physiol. Rev., 82, 47-95.
  7. Duan, Y., Kim, M. A., Kim, H. S., Seong, J. H., Lee, Y. G., Kim, D. S., Chung, H. S., 2014, Effects of feral haw (Crataegus pinnatifida Bunge) seed extracts on the antioxidant activities, J. Life Sci., 24, 386-392.
  8. Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., Chun, O. K., 2011, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 24, 1043-1048.
  9. Halliwell, B., Gutteridge, J. M., Cross, C. E., 1992, Free radicals, antioxidants, and human disease: where are we now?, J. Lab. Clin. Med., 119, 598-620.
  10. Hwang, J. S., Lee, B. H., An, X., Jeong, H. R., Kim, Y. E., Lee, I., Lee, H., Kim, D. O., 2015, Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri, Korean J. Food Sci. Technol., 47, 261-266.
  11. Hwang, K. A., Kim, G. R., Hwang, Y. J., Hwang, I. G., Song, J., 2016, Oxidative stress inhibitory effects of low temperature-aged garlic (Allium stivum L.) extracts through free radical scavenging activity, J. Korean Soc. Food Sci. Nutr., 45, 27-34.
  12. Amitabye, L. R., Theeshan, B., Mohammed, A. S., Okezi, I. A., 2002, Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula, J. Agric. Food Chem., 50, 5042-5047.
  13. Asma, H. A. S., Mohammad, A. H., 2015, Total phenols, total flavonoids contents and free radical scavenging activity of seeds crude extracts of pigeon peatradi -tionally used in Oman for the treatment of sveral chronic diseases, Asian Pac. J. Trop. Dis., 5, 316-321.
  14. Jeong, C. H., Nam, E. K., Shim, K. H., 2006, Activities and nitrate scavenging activity in different parts of Erigeron annuus, J. Agric. Life Sci., 40, 13-20.
  15. Jiang, W. Y., 2005, Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science, Trends Pharmacol. Sci., 26, 558-563.
  16. Jing, E. L., Song, T. F., Zeng, H. Q., Chang, L., Shao, P. N., 2015, Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru, LWT-Food Sci. Technol., 64, 1022-1027.
  17. Johnny, M. D., Ron, B. S., 1984, Fallibility of Griess (nitrite) test, Urology, 23, 270-271.
  18. Kahkonen, M. P., Hopia, A. I., Heinonen, M., 2001, Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 49, 4076-4082.
  19. Kang, Y. H., Park, Y. K., Lee, G. D., 1996, The nitrite scavenging and electron donating ability of phenolic compounds, Korea J. Food Sci. Technol., 28, 232-239.
  20. Kim, D. B., Shin, G. H., Lee, Y. J., Lee, J. S., Cho, J. H., Baik, S. O., Lee, O. H., 2014, Assessment and comparison of the antioxidant activities and nitrite scavenging activity of commonly consumed becerages in Korea, Food Chem., 151, 58-64.
  21. Kim, H. S., Duan, Y., Kim, M. A., Jang, S. H., 2014, Contents of antioxidative components from pulpy and seed in wild haw (Crataegus pinnatifida BUNGE), J. Environ. Sci. Int., 23, 1791-1799.
  22. Kim, J. G., Kim, H. L., Kim, S. J., Park, K. S., 2013, Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea, J. Zhejiang University-Sci. B (Biomedicine & Biotechnology), 14, 793-799.
  23. Lee, M. Y., Yoo, M. S., Whang, Y. J., Jin, Y. J., Hong, M. H., Pyo, Y. H., 2012, Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels, Korean J. Food Sci. Technol., 44, 540-544.
  24. Lin, Z., Fischer, J., Wichker, L., 2016, Intermolecular binding of blueberry pectin-rich fractions and anthocyanin, Food Chem., 194, 986-993.
  25. Nilufer, G., Sedef, N. E., 2015, Effects of cooking on in vitro sinigrin bioaccessibility, total phenols, antioxidant and actimutagenic activity of cauliflower (Brassica oleraceae L. var. Botrytis), J. Food Compos. Anal., 37, 119-127.
  26. Ortuno, J., Serrano, R., Jordan, M. J., Banon, S., 2016, Relationship between antioxidant status and oxidative stability in lamb meat reinforced with dietary rosemary diterpenes, Food Chem., 190, 1056-1063.
  27. Parzonko, A., Oswit, A., Bazylko, A., Naruszewicz, M., 2015, Anthocyans-rich Aronia melanocarpa extract possesses avility to protect endothelial progenitor cells against angiotensin II induced dysfunction, Phytomedicine, 22, 1238-1246.
  28. Raudonis, R., Raudone, L., Jakstas, V., Janulis, V., 2012, Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries, J. Chromatogr. A., 1233, 8-15.
  29. Rice-Evans, C. A., Miller, N. J., Paganga, G., 1997, Antioxidant properties of phenolic compounds, Trends Plant Sci., 2, 152-159.
  30. Singhal, M., Paul, A., Singh, H. P., 2014, Synthesis and reducing power assay of methyl semicarbazone derivatives, J. Saudi Chem. Soc., 18, 121-127.
  31. Slimestad, R., Torskangerpoll, K., Nateland, H. S., Johannessen, T., Giske, N. H., 2005, Flavonoids from black chokeberries, Aronia melanocarpa, J. Food Compos. Anal., 18, 61-68.
  32. Teoli, F., Lucioli, S., Nota, P., Frattarelli, A., Matteocci, F., Carlo, A. D., Caboni, E., Forni, C., 2016, Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits, J. Photochem. Photobiol. A., 316, 24-30.
  33. Wang, M. F., Shao, Y., Li, J. G., Zhu, N. Q., Ho, C. T., 1998, Antioxidantive phenolic compounds from sage (Salvia officinalis), J. Agric. Food Chem., 46, 4869-4873.
  34. Wang, Y., Zhu, J., Meng, X., Liu, S., Mu, J., Ning, C., 2016, Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts, Food Chem., 197, 522-529.
  35. Wootton, P. C., Moran, A., Ryan, L., 2011, Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods, Food Res. Int., 44, 217-224.