The Effects of Elevated CO2 and Ammonium Levels in Seawater on the Physiology of Gracilariopsis chorda (Holmes) Ohmi

  • Kang, Jin Woo (Division of Earth Environmental System Oceanography major, Pusan National University) ;
  • Chung, Ik Kyo (Division of Earth Environmental System Oceanography major, Pusan National University)
  • Received : 2016.02.25
  • Accepted : 2016.03.28
  • Published : 2016.04.30


We examined the effects of ocean acidification (OA) and eutrophication on the physiology of a red alga, Gracilariopsis chorda, using specimens collected at Wando Island, Korea, in July of 2015. The samples were transported to a laboratory and placed on growth media for treatments involving low or high levels of ammonium ($4{\mu}M$ or $60{\mu}M\;NH_4{^+}$) and low or high pH(7.5 or 8.2). The control treatment used filtered seawater (pH 8.2 and $4{\mu}M\;NH_4{^+}$). All experiments were conducted at $20^{\circ}C$ and under a lighting intensity of $80{\mu}mol\;photons\;m^{-2}\;s^{-1}$, with or without an injection of $CO_2$ (pH 7.5). In addition, we calculated rates of respiration under darkness, at a pH of 7.5 and $60{\mu}M\;NH_4{^+}$. Fluctuations in pH as well as the evolution of photosynthetic oxygen and $NH_4{^+}$ uptake rates were monitored for 6 h. The greatest increase in pH levels, from 7.50 to 8.65, occurred in response to $60{\mu}M\;NH_4{^+}$, whereas the largest decrease, from 7.50 to 7.42, was associated with elevated respiration rates. At a pH of 7.5, rates of oxygen evolution were higher (236% saturation) for samples treated with $60{\mu}M\;NH_4{^+}$ than for the control (121% saturation). Ammonium uptake was highest at pH 7.5 and $60{\mu}M\;NH_4{^+}$, with a rate of $0.526{\pm}0.002{\mu}mol\;g^{-1}\;FW\;h^{-1}$, followed in order by the treatments of $pH\;8.2/60{\mu}\;NH_4{^+}$, $pH\;7.5/4{\mu}M\;NH_4{^+}$, and the control ($pH\;8.2/4{\mu}M\;NH_4{^+}$). We speculated that the rates of photosynthesis and $NH_4{^+}$ uptake could be enhanced at a higher ammonium concentration and lower pH because $CO_2$ concentrations were increased through greater photosynthetic activity. Therefore, these findings suggest that the physiology of G. chorda populations can be improved by the interaction of optimized $CO_2$ concentrations and an adequate supply of essential nutrients such as ammonium.


Supported by : National Research Foundation of Korea


  1. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H., Sousa-Pinto, I., 2011, IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system, Aquaculture, 312, 77-87.
  2. Alvera-Azcarate, A., Ferreira, J. G., Nunes, J. P., 2003, Modelling eutrophication in mesotidal and macrotidal estuaries, The role of intertidal seaweeds, Est. Coast. Shelf. Sci., 57, 715-724.
  3. Andría, J. R., Perez-Llorens, J. L., Vergara, J. J., 1999, Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. Prov. (Rhodophyta), Planta, 208, 564-573.
  4. Armisen, R., 1995, World-wide use and importance of Gracilaria, J. Appl. Phycol., 7, 231-243.
  5. Caldeira, K., Wickett, M. E., 2003, Oceanography: Anthropogenic carbon and ocean pH, Nature, 425, 365-365.
  6. Caldeira, K., Wickett, M. E., 2005, Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res., 110, C09S04.
  7. Chen, B., Zou, D., 2014, Growth and photosynthetic activity of Sargassum henslowianum (Fucales, Phaeophyta) seedlings in responses to different light intensities, temperatures and $CO_2$ levels under laboratory conditions, Mar. Biol. Res., 10, 1019-1026.
  8. Choi, H. G., Kim, Y. S., Kim, J. H., Lee, S. J., Park, E. J., Ryu, J., Nam, K. W., 2006, Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea, J. Appl. Phycol., 18, 269-277.
  9. Chung, I. K., Oak, J. H., Lee, J. A., Shin, J. A., Kim, J. G., Park, K. S., 2013, Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview, ICES J. Mar. Sci., 70, 1038-1044.
  10. Cornwall, C. E., Hurd, C. L., 2015, Experimental design in ocean acidification research: Problems and solutions, ICES J. Mar. Sci., 72, doi: 10.1093/icesjms/fsv118.
  11. Deng, Y., Tang, X., Huang, B., Ding, L., 2012, Effect of temperature and irradiance on the growth and reproduction of the green macroalga, Chaetomorpha valida (Cladophoraceae, Chlorophyta), J. Appl. Phycol., 24, 927-933.
  12. Falkowski, P. G., Raven, J. A., 2007, Aquatic photo-synthesis, 2nd ed., Princeton University Press, Princeton, NJ, USA.
  13. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., Millero, F. J., 2004, Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans, Science, 305, 362-366.
  14. Fei, X., 2004, Solving the coastal eutrophication problem by large scale seaweed cultivation, Hydrobiologia, 512, 145-151.
  15. Flynn, K. J., Clark, D. R., Mitra, A., Fabian, H., Hansen, P. J., Glibert, P. M., Wheeler, G. L., Stoecker, D. K., Blackford, J. C., Brownlee, C., 2015, Ocean acidification with (de) eutrophication will alter future phytoplankton growth and succession, Proc. R. Soc. Lond. B. Biol. Sci., 282, 20142604.
  16. Gao, K., Aruga, Y., Asada, K., Kiyohara, M., 1993, Influence of enhanced $CO_2$ on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis, J. Appl. Phycol., 5, 563-571.
  17. Garcia-Sanchez, M. J., Fernandez, J. A., Niell, X., 1994, Effect of inorganic carbon supply on the photo-synthetic physiology of Gracilaria tenuistipitata, Planta, 194, 55-61.
  18. Gordillo, F. J. L., Niell, F. X., Figueroa, F. L., 2001, Non-photosynthetic enhancement of growth by high $CO_2$ level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta), Planta, 213, 64-70.
  19. Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Slig, E. R., Spalding, M., Steneck, R., Watson, R., 2008, A Global map of human impact on marine ecosystems, Science, 319, 948-952.
  20. Harley, C. D., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., Graham, M. H., 2012, Effects of climate change on global seaweed communities, J. Phycol., 48, 1064-1078.
  21. Israel, A., Hophy, M., 2002, Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater $CO_2$ concentrations, Glob. Chang. Biol., 8, 831-840.
  22. Kim, J. H., 2009, A Study on cultivation of Gracilaria chorda, Ph.D. dissertation, Chonnam National University, Yeosu, Korea.
  23. Kim, Y. S., Choi, H. G., Nam, K. W., 2001, Effects of light, desiccation and salinity for the spore discharge of Gracilaria verrucosa (Rhodophyta) in Korea, J. Fish. Sci. Tech., 4, 257-260.
  24. Kubler, J. E., Johnston, A. M., Raven, J. A., 1999, The effects of reduced and elevated $CO_2$ and $O_2$ on the seaweed Lomentaria articulata, Plant Cell. Environ., 22, 1303-1310.
  25. Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Ku'ulei, S. R., Mackenzie, F. T., 2008, Decreased abundance of crustose coralline algae due to ocean acidification, Nature Geosci., 1, 114-117.
  26. Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R. C., 2013, Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol., 135, 150-156.
  27. Larsson, C., Axelsson, L., 1999, Bicarbonate uptake and utilization in marine macroalgae, Eur. J. Phycol., 34, 79-86.
  28. Lee, Y., Kang, S.Y., 2001, A Catalogue of the seaweeds in Korea, Cheju National University Press, Jeju, Korea.
  29. Liu, C., Zou, D., 2015, Do increased temperature and $CO_2$ levels affect the growth, photosynthesis, and respiration of the marine macroalga Pyropia haitanensis (Rhodophyta)? An experimental study, Hydrobiologia, 745, 285-296.
  30. Mercado, J. M., Javier, F., Gordillo, L., Niell, F. X., Figueroa, F. L., 1999, Effects of different levels of $CO_2$ on photosynthesis and cell components of the red alga Porphyra leucosticte, J. Appl. Phycol., 11, 455-461.
  31. Pedersen, M. F., 1994, Transient ammonium uptake in the macroalga Ulva lactuca (Chlorophyta): Nature, regulation, and the consequences for choice of measuring technique, J. Phycol., 30, 980-986.
  32. Phillips, J. C., Hurd, C. L., 2004, Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand, J. Phycol., 40, 534-545.
  33. Raven, J., 1997, Putting the C in phycology, Eur. J. Phycol., 32, 319-333.
  34. Roleda, M. Y., Morris, J. N., McGraw, C. M., Hurd, C. L., 2012, Ocean acidification and seaweed reproduction: Increased $CO_2$ ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophy-ceae), Glob. Chang. Biol., 18, 854-864.
  35. Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., Neori, A., 2015, Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an integrated multi-trophic aquaculture (IMTA) system, Aquaculture, 446, 263-271.
  36. Suarez-Alvarez, S., Gomez-Pinchetti, J. L., Garcia-Reina, G., 2012, Effects of increased $CO_2$ levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta), J. Appl. Phycol., 24, 815-823.
  37. Tseng, C. K., 2001, Algal biotechnology industries and research activities in China, J. Appl. Phycol., 13, 375-380.
  38. Wernberg, T., Russell, B. D., Moore, P. J., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M. A., Steinberg, P. D., Kendrick, G. A., Connell, S. D., 2011, Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming, J. Exp. Mar. Biol. Ecol., 400, 7-16.
  39. Wu, H., Huo, Y., Hu, M., Wei, Z., He, P., 2015, Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China, Mar. Pollut. Bull., 95, 342-349.
  40. Xu, Z., Zou, D., Gao, K., 2010, Effects of elevated $CO_2$ and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta), Bot. Mar., 53, 123-129.
  41. Xu, Z., Gao, K., 2012, Future $CO_2$-induced ocean acidification mediates the physiological performance of a green tide alga, Plant Physiol., 160, 1762-1769.
  42. Yang, M. Y., Geraldino, P. J. L., Kim, M. S., 2013, DNA barcode assessment of Gracilaria salicornia (Gracilariaceae, Rhodophyta) from Southeast Asia, Bot. Stud., 54, 1-9.
  43. Yang, Y. F., Fei, X. G., Song, J. M., Hu, H. Y., Wang, G. C., Chung, I. K., 2006, Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters, Aquaculture, 254, 248-255.
  44. Yang, Y. F., Chai, Z., Wang, Q., Chen, W., He, Z., Jiang, S., 2015, Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements, Algal. Res., 9, 236-244.
  45. Zou, D., 2005, Effects of elevated atmospheric $CO_2$ on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta), Aquaculture, 250, 726-735.
  46. Zou, D., Gao, K., 2009, Effects of elevated $CO_2$ on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels, Phycologia, 48, 510-517.

Cited by

  1. Algal Communities: An Answer to Global Climate Change vol.46, pp.10, 2018,