DOI QR코드

DOI QR Code

Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions

  • Mad-Ali, Sulaiman (Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University) ;
  • Benjakul, Soottawat (Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University) ;
  • Prodpran, Thummanoon (Department of Material Product Technology, Faculty of Agro-Industry, Prince of Songkla University) ;
  • Maqsood, Sajid (Department of Food Science, College of Food and Agriculture, United Arab Emirates University)
  • Received : 2015.09.18
  • Accepted : 2015.12.06
  • Published : 2016.06.01

Abstract

Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained ${\alpha}$-chains as the predominant component, followed by ${\beta}$-chain. Gelling and melting temperatures of those gelatins were $23.02^{\circ}C$ to $24.16^{\circ}C$ and $33.07^{\circ}C$ to $34.51^{\circ}C$, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in $L^*$-value but an increase in $b^*$-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin.

Keywords

Goat;Gelatin;Skin;Pretreatment;Alkaline;Gel Strength

References

  1. Arnesen, J. A. and A. Gildberg. 2007. Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour. Technol. 98:53-57. https://doi.org/10.1016/j.biortech.2005.11.021
  2. Badii, F. and N. K. Howell. 2003. Elucidation of the effect of formaldehyde and lipids on frozen stored cod collagen by FTraman spectroscopy and differential scanning calorimetry. J. Agric. Food Chem. 51:1440-1446. https://doi.org/10.1021/jf020492u
  3. Bandekar, J. 1992. Amide modes and protein conformation. BBA-Protein Struct. M. 1120:123-143. https://doi.org/10.1016/0167-4838(92)90261-B
  4. Benjakul, S., P. Kittiphattanabawon, and J. M. Regenstein. 2012. Fish gelatin. In: Food Biochemistry and Food (Eds. B. K. Simpson, L. M. L. Nollet, and F. Toldrae). John Wiley & Sons Inc., Ames, IA, USA. pp. 388-405.
  5. Benjakul, S., K. Oungbho, W. Visessanguan, Y. Thiansilakul, and S. Roytrakul. 2009. Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. Food Chem. 116:445-451. https://doi.org/10.1016/j.foodchem.2009.02.063
  6. Bergman, I. and R. Loxley. 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35:1961-1965. https://doi.org/10.1021/ac60205a053
  7. Binsi, P. K., B. A. Shamasundar, A. O. Dileep, F. Badii, and N. K. Howell. 2009. Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocoll. 23:132-145. https://doi.org/10.1016/j.foodhyd.2007.12.004
  8. Boran, G., S. J. Mulvaney, and J. M. Regenstein. 2010. Rheological properties of gelatin from silver carp skin compared to commercially available gelatins from different sources. J. Food Sci. 75:565-571. https://doi.org/10.1111/j.1750-3841.2010.01543.x
  9. Cho, S.-H., M. L. Jahncke, K.-B. Chin, and J.-B. Eun. 2006. The effect of processing conditions on the properties of gelatin from skate (Raja Kenojei) skins. Food Hydrocoll. 20:810-816. https://doi.org/10.1016/j.foodhyd.2005.08.002
  10. Development of Livestock Developmengt, Goat farming statistic in Thailand since 1998 to 2012. 2014. http://www.dld.go.th /ict/stat_web/yearly/yearly56/ Accessed October 5, 2014.
  11. Friess, W. and G. Lee. 1996. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials 17:2289-2294. https://doi.org/10.1016/0142-9612(96)00047-6
  12. Gennadios, A., C. L. Weller, M. A. Hanna, and G. W. Froning. 1996. Mechanical and barrier properties of egg albumen films. J. Food Sci. 61:585-589. https://doi.org/10.1111/j.1365-2621.1996.tb13164.x
  13. Gomez-Guillen, M. C., J. Turnay, M. D. Fernandez-Diaz, N. Ulmo, M. A. Lizarbe, and P. Montero. 2002. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 16:25-34. https://doi.org/10.1016/S0268-005X(01)00035-2
  14. Hinterwaldner, R. 1977. Technology of gelatin manufacture. In: The Science and Technology of Gelatin (Eds. A. G. Ward and A. Courts). Academic Press, London, UK. pp. 315-364.
  15. Jamilah, B. and K. G. Harvinder. 2002. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 77:81-84. https://doi.org/10.1016/S0308-8146(01)00328-4
  16. Jamilah, B., K. W. Tan, M. R. Umi Hartina, and A. Azizah. 2011. Gelatins from three cultured freshwater fish skins obtained by liming process. Food Hydrocoll. 25:1256-1260. https://doi.org/10.1016/j.foodhyd.2010.11.023
  17. Jellouli, K., R. Balti, A. Bougatef, N. Hmidet, A. Barkia, and M. Nasri. 2011. Chemical composition and characteristics of skin gelatin from grey triggerfish (Balistes capriscus). LWT-Food Sci. Technol. 44:1965-1970. https://doi.org/10.1016/j.lwt.2011.05.005
  18. John, P. and A. Courts. 1977. Relationship between collagen and gelatin. In: The science and technology of gelatin (Eds. A. G. Ward and A. Courts). Academic Press, London, UK. pp. 138-168.
  19. Karim, A. A. and R. Bhat. 2009. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 23:563-576. https://doi.org/10.1016/j.foodhyd.2008.07.002
  20. Kasankala, L. M., Y. Xue, Y. Weilong, S. D. Hong, and Q. He. 2007. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresour. Technol. 98:3338-3343. https://doi.org/10.1016/j.biortech.2006.03.019
  21. Kittiphattanabawon, P., S. Benjakul, W. Visessanguan, and F. Shahidi. 2010. Comparative study on characteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark as affected by extraction conditions. Food Hydrocoll. 24:164-171. https://doi.org/10.1016/j.foodhyd.2009.09.001
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  23. Lertittikul, W., S. Benjakul, and M. Tanaka. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH. Food Chem. 100:669-677. https://doi.org/10.1016/j.foodchem.2005.09.085
  24. Liu, H. Y., D. Li, and S. D. Guo. 2008. Extraction and properties of gelatin from channel catfish (Ietalurus punetaus) skin. LWT-Food Sci. Technol. 41:414-419. https://doi.org/10.1016/j.lwt.2007.03.027
  25. Mohtar, N. F., C. Perera, and S.-Y. Quek. 2010. Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS-PAGE. Food Chem. 122:307-313. https://doi.org/10.1016/j.foodchem.2010.02.027
  26. Nagarajan, M., S. Benjakul, T. Prodpran, P. Songtipya, and H. Kishimura. 2012. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 29:389-397. https://doi.org/10.1016/j.foodhyd.2012.04.001
  27. Ross-Murphy, S. B. 1992. Structure and rheology of gelatin gels: Recent progress. Polymer 33:2622-2627. https://doi.org/10.1016/0032-3861(92)91146-S
  28. Schrieber, R. and H. Gareis. 2007. Gelatine handbook, theory and industrial practice. Wiley-VCH GmbH & Co., Weinheim, Germany. pp. 63-71.
  29. Sheela, A. K. 2014. Gelatin Market - global industry analysis, size, share, growth, trends and fsorecast, 2012-2018. http://www.transparencymarketresearch.com/gelatin.html Accessed October 3, 2014.
  30. Sinthusamran, S., S. Benjakul, and H. Kishimura. 2014. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 152:276-284. https://doi.org/10.1016/j.foodchem.2013.11.109
  31. Stainsby, G. 1977. The physical chemistry of gelatin in solution. In: The Science and Technology of Gelatin (Eds. A. G. Ward and A. Courts). Academic Press, London, UK. pp. 315-364.
  32. Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 1980. Principles and procedures of statistics: a biometrical approach. MacGraw-Hill, New York, NY, USA.
  33. Taheri, A., A. M. Abedian Kenari, A. Gildberg, and S. Behnam. 2009. Extraction and physicochemical characterization of greater lizardfish (Saurida tumbil) skin and bone gelatin. J. Food Sci. 74:E160-E165. https://doi.org/10.1111/j.1750-3841.2009.01106.x
  34. Tavakolipour, H. 2011. Extraction and evaluation of gelatin from silver carp waste. World J. Fish Mar. Sci. 3:10-15.
  35. Warmington, B. G. and A. H. Kirton. 1990. Genetic and nongenetic influences on growth and carcass traits of goats. Small Rumin. Res. 3:147-165. https://doi.org/10.1016/0921-4488(90)90089-O
  36. Widyasari, R. and S. Rawdkuen. 2014. Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food Appl. Biosci. J. 2:83-95.
  37. Yang, H., Y. Wang, P. Zhou, and J. M. Regenstein. 2008. Effects of alkaline and acid pretreatment on the physical properties and nanostructures of the gelatin from channel catfish skins. Food Hydrocoll. 22:1541-1550. https://doi.org/10.1016/j.foodhyd.2007.10.007

Cited by

  1. Gelatin Methacrylate Hydrogels as Biomimetic Three-Dimensional Matrixes for Modeling Breast Cancer Invasion and Chemoresponse in Vitro vol.8, pp.34, 2016, https://doi.org/10.1021/acsami.6b06309
  2. crystal violet nanoclusters pp.03770486, 2018, https://doi.org/10.1002/jrs.5495
  3. Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation vol.10, pp.2, 2018, https://doi.org/10.3390/polym10020208