DOI QR코드

DOI QR Code

Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia

  • Chen, Lianxiang (Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University) ;
  • Wang, Wei (Department of Emergency, Inner Mongolia People's Hospital) ;
  • Cao, Lixia (Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University) ;
  • Li, Zhijun (Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University) ;
  • Wang, Xing (Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University)
  • Received : 2015.11.09
  • Accepted : 2016.02.11
  • Published : 2016.04.30

Abstract

Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cance-rassociated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Reintroduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.

Keywords

AML;CCAT1;lncRNA;miR-155

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Inner Mongolia People's Hospital

References

  1. Alaiyan, B., Ilyayev, N., Stojadinovic, A., Izadjoo, M., Roistacher, M., Pavlov, V., Tzivin, V., Halle, D., Pan, H., Trink, B., et al. (2013). Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 13, 196. https://doi.org/10.1186/1471-2407-13-196
  2. Arancio, W., Pizzolanti, G., Genovese, S.I., Baiamonte, C., and Giordano, C. (2014). Competing endogenous RNA and interactome bioinformatic analyses on human telomerase. Rejuvenation Res. 17, 161-167. https://doi.org/10.1089/rej.2013.1486
  3. Calin, G.A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S.E., Iorio, M.V., Visone, R., Sever, N.I., Fabbri, M., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J. Med. 353,1793-1801. https://doi.org/10.1056/NEJMoa050995
  4. Deng, L., Yang, S.B., Xu, F.F., and Zhang, J.H. (2015). Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J. Exper. Clin. Cancer Res. 34, 18. https://doi.org/10.1186/s13046-015-0136-7
  5. Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., , E., Dahlberg, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627-3632. https://doi.org/10.1073/pnas.0500613102
  6. Fernando, T.R., Rodriguez-Malave, N.I., Waters, E.V., Yan, W., Casero, D., Basso, G., Pigazzi, M., and Rao, D.S. (2015). LncRNA expression discriminates karyotype and predicts survival in BLymphoblastic Leukemia. Mol. Cancer Res.13, 839-851. https://doi.org/10.1158/1541-7786.MCR-15-0006-T
  7. Gerloff, D., Grundler, R., Wurm, A.A., Brauer-Hartmann, D., Katzerke, C., Hartmann, J.U., Madan, V., Muller-Tidow, C., Duyster, J., Tenen, D.G. et al. (2015). NF-${\kappa}B$/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 29, 535-547. https://doi.org/10.1038/leu.2014.231
  8. Hughes, J.M., Legnini, I., Salvatori, B., Masciarelli, S., Marchioni, M., Fazi, F., Morlando, M., Bozzoni, I., and Fatica, A. (2015). C/ EBPalpha-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6, 18534-18544. https://doi.org/10.18632/oncotarget.4069
  9. Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML- 1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299-304. https://doi.org/10.1038/nm997
  10. Jeziskova, I., Musilova, M., Culen, M., Foltankova, V., Dvorakova, D., Mayer, J., and Racil, Z. (2015). Distribution of mutations in DNMT3A gene and the suitability of mutations in R882 codon for MRD monitoring in patients with AML. Int. J. Hematol. 102, 553-557. https://doi.org/10.1007/s12185-015-1856-3
  11. Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W.O., Corcoran, M., Grander, D., and Morris, K.V. (2013). A pseudogene longnoncoding- RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 20, 440-446. https://doi.org/10.1038/nsmb.2516
  12. Jongen-Lavrencic, M., Sun, S.M., Dijkstra, M.K., Valk, P.J.M., Lowenberg, B. (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078-5085. https://doi.org/10.1182/blood-2008-01-133355
  13. Kallen, A.N., Zhou, X.B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J.S., Zhang, H., et al. (2013). The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101-112. https://doi.org/10.1016/j.molcel.2013.08.027
  14. Khandelwal, A., Bacolla, A., Vasquez, K.M., and Jain, A. (2015). Long non-coding RNA: A new paradigm for lung cancer. Mol. Carcinog. 54, 1235-1251. https://doi.org/10.1002/mc.22362
  15. Kluiver, J., Poppema, S., De Jong, D., Blokzijl, T., Harms, G., Jacobs, S., Kroesen, B.J., and van den Berg, A. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243-249. https://doi.org/10.1002/path.1825
  16. Kluiver, J., Haralambieva, E., De Jong, D., Blokzijl, T., Jacobs, S., Kroesen, B.J., Poppema, S., and van den Berg, A. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147-153. https://doi.org/10.1002/gcc.20273
  17. Kumar, M.S., Armenteros-Monterroso, E., East, P., Chakravorty, P., Matthews, N., Winslow, M.M., and Downward, J. (2014). HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505, 212-217. https://doi.org/10.1038/nature12785
  18. Mizrahi, I., Mazeh, H., Grinbaum, R., Beglaibter, N., Wilschanski, M., Pavlov, V., Adileh, M., Stojadinovic, A., Avital, I., Gure, A.O., et al. (2015). Colon cancer associated transcript-1 (CCAT1) expression in adenocarcinoma of the stomach. J. Cancer 6, 105-110. https://doi.org/10.7150/jca.10568
  19. Palma, C.A., Al Sheikha, D., Lim, T.K., Bryant, A., Vu, T.T., Jayaswal, V., and Ma, D.D. (2014). MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leykaemia. Mol. Cancer. 13, 79. https://doi.org/10.1186/1476-4598-13-79
  20. Peng, W., Si, S., Zhang, Q., Li, C., Zhao, F., Wang, F., Yu, J., and Ma, R. (2015). Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer pro- gression. J. Exp. Clin. Cancer Res. 34, 79. https://doi.org/10.1186/s13046-015-0197-7
  21. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038. https://doi.org/10.1038/nature09144
  22. Rokah, O.H., Granot, G., Ovcharenko, A., Modai, S., Pasmanik-Chor, M., Toren, A., Shomron, N., and Shpilberg, O. (2012). Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 7, e35501. https://doi.org/10.1371/journal.pone.0035501
  23. Saadatpour, A., Guo, G., Orkin, S.H., and Yuan, G.C. (2014). Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 15, 525. https://doi.org/10.1186/s13059-014-0525-9
  24. Sakurai, M., Kunimoto, H., Watanabe, N., Fukuchi, Y., Yuasa, S., Yamazaki, S., Nishimura, T., Sadahira, K., Fukuda, K., Okano, H., et al. (2014). Impaired hematopoietic differentiation of RUNX1- mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28, 2344-2354. https://doi.org/10.1038/leu.2014.136
  25. Sen, R., Ghosal, S., Das, S., Balti, S., and Chakrabarti, J. (2014). Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal 2014, 896206.
  26. Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W., and Lv, C. (2014). Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell. Mol. Med. 18, 991-1003. https://doi.org/10.1111/jcmm.12243
  27. Su, R., Lin, H.S., Zhang, X.H., Yin, X.L., Ning, H.M., Liu, B., Zhai, P.F., Gong, J.N., Shen, C., Song, L., et al. (2015). MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 34, 3226-3239. https://doi.org/10.1038/onc.2014.274
  28. Sun, S., Sun, P., Wang, C., and Sun, T. (2014). Downregulation of microRNA-155 accelerates cell growth and invasion by targeting cmyc in human gastric carcinoma cells. Oncol. Rep. 32, 951-956. https://doi.org/10.3892/or.2014.3288
  29. Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F., and Fan, Q. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366-5383. https://doi.org/10.1093/nar/gkq285
  30. Wang, Y., Wu, P., Lin, R., Rong, L., Xue, Y., and Fang, Y. (2015). LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Sci. Rep. 5, 13749. https://doi.org/10.1038/srep13749
  31. Xue, H., Hua, L.M., Guo, M., and Luo, J.M. (2014). SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol. Rep. 32, 2253-2259. https://doi.org/10.3892/or.2014.3435
  32. Yang, F., Xue, X., Bi, J., Zheng, L., Zhi, K., Gu, Y., and Fang, G. (2013). Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J. Cancer Res. Clin. Oncol. 139, 437-445. https://doi.org/10.1007/s00432-012-1324-x
  33. Ye, N., Wang, B., Quan, Z.F., Cao, S.J., Wen, X.T., Huang, Y., Huang, X.B., Wu, R., Ma, X.P., and Yan, Q.G. (2014). Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15, 5993-5997. https://doi.org/10.7314/APJCP.2014.15.15.5993
  34. Yokoyama, Y., Wan, X., Shinohara, A., Takahashi, S., Takahashi, Y., Niwa, K., and Tamaya, T. (2000). Expression of PTEN and PTEN pseudogene in endometrial carcinoma. Int. J. Mol. Med. 6, 47-50.
  35. Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., et al. (2014). Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13, 3086-3097. https://doi.org/10.1158/1535-7163.MCT-14-0245
  36. Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014). A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666-681. https://doi.org/10.1016/j.ccr.2014.03.010
  37. Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z., and Chen, Y. (2013). Long non-coding RNA: a new player in cancer. J. Hematol. Oncol. 6, 37. https://doi.org/10.1186/1756-8722-6-37
  38. Zhu, H., Zhou, X., Chang, H., Li, H., Liu, F., Ma, C., and Lu, J. (2015). CCAT1 promotes hepatocellular carcinoma cell proliferation and invasion. Int. J. Clin. Exper. Pathol. 8, 5427-5434.

Cited by

  1. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells vol.9, pp.4, 2017, https://doi.org/10.3390/cancers9040038
  2. A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes vol.1, pp.19, 2017, https://doi.org/10.1182/bloodadvances.2017008284
  3. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p vol.53, pp.3, 2017, https://doi.org/10.1007/s11626-016-0102-5
  4. Long non-coding RNA CCAT1/miR-218/ZFX axis modulates the progression of laryngeal squamous cell cancer vol.39, pp.6, 2017, https://doi.org/10.1177/1010428317699417
  5. CCAT1: an oncogenic long noncoding RNA in human cancers vol.143, pp.4, 2017, https://doi.org/10.1007/s00432-016-2268-3
  6. Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis vol.6, pp.4, 2017, https://doi.org/10.3892/br.2017.876
  7. LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis vol.16, pp.8, 2017, https://doi.org/10.1080/15384101.2017.1301334
  8. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1 vol.49, pp.6, 2017, https://doi.org/10.1093/abbs/gmx041
  9. Colon cancer associated transcripts in human cancers vol.94, 2017, https://doi.org/10.1016/j.biopha.2017.07.073
  10. Long non-coding RNAs in leukemia vol.24, pp.4, 2017, https://doi.org/10.1097/MOH.0000000000000354
  11. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts vol.130, pp.11, 2017, https://doi.org/10.1182/blood-2016-10-697698
  12. Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution vol.58, pp.8, 2017, https://doi.org/10.1080/10428194.2016.1266626
  13. Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules vol.6, pp.1, 2016, https://doi.org/10.1038/srep35939
  14. Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial–mesenchymal transition in vitro and predicts poor prognosis in glioma vol.39, pp.3, 2017, https://doi.org/10.1177/1010428317695022
  15. Differential expression profile analysis of lncRNA UCA1α regulated mRNAs in bladder cancer 2017, https://doi.org/10.1002/jcb.26345
  16. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia vol.5, pp.1, 2015, https://doi.org/10.1186/s40164-016-0059-9
  17. MicroRNAs and their variants in an RNA world: implications for complex interactions and diverse roles in an RNA regulatory network 2016, https://doi.org/10.1093/bib/bbw124
  18. Inhibition of proliferation and invasion of hepatocellular carcinoma cells by lncRNA-ASLNC02525 silencing and the mechanism vol.51, pp.3, 2017, https://doi.org/10.3892/ijo.2017.4069
  19. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4 vol.31, pp.3, 2017, https://doi.org/10.1096/fj.201600994R
  20. MicroRNAs as New Biomarkers for Diagnosis and Prognosis, and as Potential Therapeutic Targets in Acute Myeloid Leukemia vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020460
  21. CX-3543 Promotes Cell Apoptosis through Downregulation of CCAT1 in Colon Cancer Cells vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/9701957
  22. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells vol.20, pp.1, 2018, https://doi.org/10.1186/s12575-018-0086-5
  23. Long Noncoding RNAs in Acute Myeloid Leukemia Patients vol.22, pp.10, 2018, https://doi.org/10.1089/gtmb.2018.0143
  24. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0392-4
  25. Identification of long non-coding RNA competing interactions and biological pathways associated with prognosis in pediatric and adolescent cytogenetically normal acute myeloid leukemia vol.18, pp.1, 2018, https://doi.org/10.1186/s12935-018-0621-0
  26. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics vol.109, pp.2, 2018, https://doi.org/10.1111/cas.13465
  27. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia vol.234, pp.5, 2018, https://doi.org/10.1002/jcp.27393
  28. Long Non-Coding RNA and Acute Leukemia vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030735
  29. : Roles and functions in human cancers pp.00219541, 2019, https://doi.org/10.1002/jcp.28176