Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

  • Jeong, Jin-Young (Department of Brain and Cognitive Sciences, DGIST) ;
  • Kweon, Hae-Jin (Department of Brain and Cognitive Sciences, DGIST) ;
  • Suh, Byung-Chang (Department of Brain and Cognitive Sciences, DGIST)
  • Received : 2015.10.20
  • Accepted : 2016.02.05
  • Published : 2016.04.30


Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.


$Ca_V2.3$ channel;Danio rerio voltage-sensitive phosphatase(Dr-VSP);$M_1$ muscarinic receptor;$PI(4,5)P_2$;Pseudojanin


Supported by : Ministry of Education, Science, & Technology, DGIST


  1. Balla, T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019-1137.
  2. Bannister, R.A., Melliti, K., and Adams, B.A. (2004). Differential modulation of CaV2.3 $Ca6{2+}$ channels by $G{\alpha}_{q/11}$-coupled muscarinic receptors. Mol. Pharmacol. 65, 381-388.
  3. Bielas, S.L., Silhavy, J.L., Brancati, F., Kisseleva, M.V., Al-Gazali, L., Sztriha, L., Bayoumi, R.A., Zaki, M.S., Abdel-Aleem, A., Rosti, R.O., et al. (2009). Mutations in INPP5E, encoding inositol polyphosphate- 5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032-1036.
  4. Dickson, E.J., Jensen, J.B., and Hille, B. (2014). Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)$P_2$ and maintenance of KCNQ2/3 ion channel current. Proc. Natl. Acad. Sci. USA 111, E2281-90.
  5. Fang, H., Franke, R., Patanavanich, S., Lalvani, A., Powell, N.K., Sando, J.J., and Kamatchi, G.L. (2005). Role of ${\alpha}1$ 2.3 subunit I-II linker sites in the enhancement of $Ca_V2.3$ current by phorbol 12-myristate 13-acetate and acetyl-$\beta$-methylcholine. J. Biol. Chem. 208, 23559-23565.
  6. Gamper, N., Reznikov, V., Yamada, Y., Yang, J., and Shapiro, M.S. (2004). Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific $G_{q/11}$-mediated modulation of N-type $Ca^{2+}$ channels. J. Neurosci. 24, 10980-10992.
  7. Guo, S., Stolz, L.E., Lemrow, S.M., and York, J.D. (1999). SAC1- like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274, 12990-12995.
  8. Hamid, J., Nelson, D., Spaetgens, R., Dubel, S.J., Snutch, T.P., and Zamponi, G.W. (1999). Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J. Biol. Chem. 274, 6195-6202.
  9. Hammond, G.R., Fischer, M.J., Anderson, K.E., Holdich, J., Koteci, A., Balla, T., and Irvine, R.F. (2012). PI4P and $PI(4,5)P_2$ are essential but independent lipid determinants of membrane identity. Science 337, 727-730.
  10. Hilgemann, D.W., Feng, S., and Nasuhoglu, C. (2001). The complex and intriguing lives of $PIP_2$ with ion channels and transporters. Sci. STKE 2001, re19.
  11. Huang, C.L. (2007). Complex roles of $PIP_2$ in the regulation of ion channels and transporters. Am. J. Physiol. Renal Physiol. 293, F1761-F1765.
  12. Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J., and Meyer, T. (2005). An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415-418.
  13. Kamatchi, G.L., Tiwari, S.N., Chan, C.K., Chen, D., Do, S.H., Durieux M.E., and Lynch C. 3rd. (2003). Distinct regulation of expressed calcium channels 2.3 in Xenopus oocytes by direct or indirect activation of protein kinase C. Brain Res. 968, 227-237.
  14. Kamatchi, G.L., Franke, R., Lynch, C. 3rd, and Sando, J.J. (2004). Identification of sites responsible for potentiation of type 2.3 calcium currents by acetyl-$\beta$-methylcholine. J. Biol. Chem. 279, 4102-4109.
  15. Kammermeier, P.J., Ruiz-Velasco, V., and Ikeda, S.R. (2000). A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both $G{\alpha}_{q/11}$ and $G{\beta}{\gamma}$. J. Neurosci. 20, 5623-5629.
  16. Keum, D., Baek, C., Kim, D.I., Kweon, H.J., and Suh, B.C. (2014). Voltage-dependent regulation of $Ca_V2.2$ channels by $G_q$-coupled receptor is facilitated by membrane-localized $\beta$ subunit. J. Gen. Physiol. 144, 297-309.
  17. Kim, D.I., Park, Y., Jang, D.J., and Suh, B.C. (2015). Dynamic phospholipid interaction of ${\beta}2e$ subunit regulates the gating of voltage-gated $Ca^{2+}$ channels. J. Gen. Physiol. 145, 529-541.
  18. Kwiatkowska, K. (2010). One lipid, multiple functions: how various pools of PI(4,5)$P_2$ are created in the plasma membrane. Cell. Mol. Life Sci. 67, 3927-3946.
  19. Lee, S.C., Choi, S., Lee, T., Kim, H.L., Chin, H., and Shin, H.S. (2002) Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc. Natl. Acad. Sci. USA 99, 3276-3281.
  20. Liang, H., DeMaria, C.D., Erickson, M.G., Mori, M.X., Alseikhan, B.A., and Yue, D.T. (2003). Unified mechanisms of $Ca^{2+}$ regulation across the $Ca^{2+}$ channel family. Neuron 39, 951-960.
  21. Melliti, K., Meza, U., and Adams, B. (2000). Muscarinic stimulation of ${\alpha}1E$ Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-${\beta}1$. J. Neurosci. 20, 7167-7173.
  22. Melliti, K., Meza, U., and Adams, B.A. (2001). RGS2 blocks slow muscarinic inhibition of N-type $Ca^{2+}$ channels reconstituted in a human cell line. J. Physiol. 532, 337-347.
  23. Meza, U., Thapliyal, A., Bannister, R.A., and Adams, B.A. (2007). Neurokinin 1 receptors trigger overlapping stimulation and inhibition of $Ca_V2.3$ (R-type) calcium channels. Mol. Pharmacol. 71, 284-293.
  24. Niidome, T., Kim, M.S., Friedrich, T., and Mori, Y. (1992). Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett. 308, 7-13.
  25. Okamura, Y, Murata, Y., and Iwasaki, H. (2009). Voltage-sensing phosphatase: actions and potentials. J. Physiol. 587(Pt 3), 513-520.
  26. Oude Weernink, P.A., Schmidt, M., and Jakobs, K.H. (2004). Regulation and cellular roles of phosphoinositide 5-kinases. Eur. J. Pharmacol. 500, 87-99.
  27. Page, K.M., Cantí, C., Stephens, G.J., Berrow, N.S., and Dolphin, A.C. (1998). Identification of the amino terminus of neuronal $Ca^{2+}$ channel ${\alpha}1$ subunits $\alpha$ 1B and ${\alpha}1E$ as an essential determinant of G-protein modulation. J. Neurosci. 18, 4815-4824.
  28. Perez-Burgos, A., Perez-Rosello, T., Salgado, H., Flores-Barrera, E., Prieto, G.A., Fugueroa, A., Galarraga, E., and Bargas, J. (2008). Muscarinic M1 modulation of N- and L-types of calcium channels is mediated by protein kinase C in neostriatal neurons. Neuroscience 155, 1079-1097.
  29. Perez-Burgos, A., Prieto, G.A., Galarraga, E., and Bargas, J. (2010). $Ca_V2.1$ channels are modulated by muscarinic $M_1$ receptors through phosphoinositied hydrolysis in neostriatal neurons. Neuroscience 165, 293-299.
  30. Perez-Rosello, T., Figueroa, A., Salgado, H., Vilchis, C., Tecuapetia, F., Guzman, J.N., Galarraga, E., and Bargas, J. (2004). Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of $Ca_V2.1$ and $Ca_V2.2$ $Ca^{2+}$ channels. J. Neurophysiol. 93, 2507-2519.
  31. Rajagopal, S., Fang, H., Patanavanich, S., Sando, J.J., and Kamatchi, G.L. (2008). Protein kinase C isozyme-specific potentiation of expressed $Ca_V2.3$ currents by acetyl-$\beta$-methylcholine and phorbol- 12-myristate, 13-acetate. Brain Res. 1210, 1-10.
  32. Rohacs T. (2009). Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45, 554-565.
  33. Saequsa, H., Kurihara, T., Zong, S., Minowa, O., Kazuno, A., Han, W., Matsuda, Y., Yamanaka, H., Osanai, M., Noda, T., et al. (2000). Altered pain responses in mice lacking ${\alpha}1E$ subunit of the voltage-dependent $Ca^{2+}$ channel. Proc. Natl. Acad. Sci. USA 97, 6132-6137.
  34. Shapiro, M.S., Loose, M.D., Hamilton, S.E., Nathanson, N.M., Gomeza, J., Wess, J., and Gille, B. (1999). Assignment of muscarinic receptor subtypes mediating G-protein modulation of $Ca^{2+}$ channels by using knockout mice. Proc. Natl. Acad. Sci. USA 96, 10899-10904.
  35. Soong, T.W., Stea, A., Hodson, C.D., Dubel, S.J., Vincent, S.R., and Snutch, T.P. (1993). Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133-1136.
  36. Stea, A., Soong, T.W., and Snutch, T.P. (1995). Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15, 929-940.
  37. Suh, B.C., and Hille, B. (2005). Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370-378.
  38. Suh, B.C., and Hille, B. (2008). $PIP_2$ is a necessary cofactor for ion channel function: How and why? Annu. Rev. Biophys. 37, 175-195.
  39. Suh, B.C., Inoue, T., Meyer, T., and Hille, B. (2006). Rapid chemically induced changes of PtdIns(4,5)$P_2$ gate KCNQ ion channels. Science 314, 1454-1457.
  40. Suh, B.C., Leal, K., and Hille, B. (2010). Modulation of high-voltage activated $Ca^{2+}$ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67, 224-238.
  41. Suh, B.C., Kim, D.I., Falkenburger, B.H., and Hille, B. (2012). Membrane-localized $\beta$-subunits alter the $PIP_2$ regulation of highvoltage activated $Ca^{2+}$ channels. Proc. Natl. Acad. Sci. USA 109, 3161-3166.
  42. Tai, C., Kuzmiski, J.B., and MacVicar, B.A. (2006). Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 6249-6258.
  43. Williams, M.E., Marubio, L.M., Deal, C.R., Hans, M., Brust P.F., Philipson L.H., Miller R.J., Johnson E.C., Harpold M.M., and Ellis S.B. (1994). Structure and functional characterization of neuronal ${\alpha}1E$ channel subtypes. J. Biol. Chem. 269, 22347-22357.
  44. Wu, L.G., Borst, J.G., and Sakmann, B. (1998). R-type $Ca^{2+}$ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. USA 95, 4720-4725.
  45. Wuttke, A., Sågetorp, J., and Tengholm, A. (2010). Distinct plasmamembrane PtdIns(4)P and PtdIns(4,5)$P_2$ dynamics in secretagogue- stimulated $\beta$-cells. J. Cell Sci. 123, 1492-1502.
  46. Zamponi, G.W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T.P. (1997). Crosstalk between G proteins and protein kinase C mediated by the calcium channel ${\alpha}1$ subunit. Nature 385, 442-446.

Cited by

  1. Stimulatory and inhibitory effects of PKC isozymes are mediated by serine/threonine PKC sites of the Ca v 2.3α 1 subunits vol.621, 2017,
  2. The HOOK region of voltage-gated Ca2+channel β subunits senses and transmits PIP2signals to the gate vol.149, pp.2, 2017,
  3. PI(4,5)P 2 and L-type Ca 2+ Channels Partner Up to Fine-Tune Ca 2+ Dynamics in β Cells vol.23, pp.7, 2016,
  4. channel β subunits in α1–β complexes reveal competitive replacement yet no spontaneous dissociation vol.115, pp.42, 2018,
  5. 2.3 channels vol.150, pp.3, 2018,
  6. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering vol.98, pp.4, 2018,