DOI QR코드

DOI QR Code

Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

  • Jiang, Yong (Medical Examination College, Jilin Medical University) ;
  • Liu, He (Medical Examination College, Jilin Medical University) ;
  • Liu, Wen-jing (Medical Examination College, Jilin Medical University) ;
  • Tong, Hai-bin (Life Science Research Center, Beihua University) ;
  • Chen, Chang-jun (Medical Examination College, Jilin Medical University) ;
  • Lin, Fu-gui (Medical Examination College, Jilin Medical University) ;
  • Zhuo, Yan-hang (Medical Examination College, Jilin Medical University) ;
  • Qian, Xiao-zhen (Medical Examination College, Jilin Medical University) ;
  • Wang, Zeng-bin (Medical Examination College, Jilin Medical University) ;
  • Wang, Yu (Medical Examination College, Jilin Medical University) ;
  • Zhang, Peng (Medical Examination College, Jilin Medical University) ;
  • Jia, Hong-liang (Medical Examination College, Jilin Medical University)
  • Received : 2015.08.20
  • Accepted : 2015.11.26
  • Published : 2016.04.30

Abstract

Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.

Keywords

angiogenesis;AQP1;Mef2c;migration;vascular tube formation

Acknowledgement

Supported by : Science and Technology Department of Jilin Province, National Natural Science Foundation of China, Jilin Provincial Health Department

References

  1. Esteva-Font, C., Jin, B.J., and Verkman, A.S. (2014). Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. 28, 1446-1453. https://doi.org/10.1096/fj.13-245621
  2. Au, C.G., Cooper, S.T., Lo, H.P., Compton, A.G., Yang, N., Wintour, E.M., North, K.N., and Winlaw, D.S. (2004). Expression of aquaporin 1 in human cardiac and skeletal muscle. J. Mol. Cell Cardiol. 36, 655-662. https://doi.org/10.1016/j.yjmcc.2004.01.009
  3. Abreu-Rodriguez, I., Sanchez Silva, R., Martins, A.P., Soveral, G., Toledo-Aral, J.J., Lopez-Barneo, J., and Echevarria, M. (2011). Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1alpha. PLoS One 6, e28385. https://doi.org/10.1371/journal.pone.0028385
  4. Bi, W., Drake, C.J., and Schwarz, J.J. (1999). The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev. Biol. 211, 255-267. https://doi.org/10.1006/dbio.1999.9307
  5. Bondy, C., Chin, E., Smith, B.L., Preston, G.M., and Agre, P. (1993). Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc. Natl. Acad. Sci. USA 90, 4500-4504. https://doi.org/10.1073/pnas.90.10.4500
  6. Flavell, S.W., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., and Greenberg, M.E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038. https://doi.org/10.1016/j.neuron.2008.11.029
  7. Gao, C., Tang, J., Li, R., and Huan, J. (2012). Specific inhibition of AQP1 water channels in human pulmonary microvascular endothelial cells by small interfering RNAs. J. Trauma Acute Care Surg. 72, 150-161. https://doi.org/10.1097/TA.0b013e318230e25d
  8. Hara-Chikuma, M., and Verkman, A.S. (2006). Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J. Am. Soc. Nephrol. 17, 39-45.
  9. Hara-Chikuma, M., and Verkman, A.S. (2008). Roles of aquaporin-3 in the epidermis. J. Invest Dermatol. 128, 2145-2151. https://doi.org/10.1038/jid.2008.70
  10. Hosking, B.M., Wang, S.C., Chen, S.L., Penning, S., Koopman, P., and Muscat, G.E. (2001). SOX18 directly interacts with MEF2C in endothelial cells. Biochem. Biophys. Res. Commun. 287, 493-500. https://doi.org/10.1006/bbrc.2001.5589
  11. Kalsotra, A., Singh, R.K., Gurha, P., Ward, A.J., Creighton, C.J., and Cooper, T.A. (2014). The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 6, 336-345. https://doi.org/10.1016/j.celrep.2013.12.025
  12. Kim, J., and Jung, Y. (2011). Different expressions of AQP1, AQP4, eNOS, and VEGF proteins in ischemic versus non-ischemic cerebropathy in rats: potential roles of AQP1 and eNOS in hydrocephalic and vasogenic edema formation. Anat. Cell Biol. 44, 295-303. https://doi.org/10.5115/acb.2011.44.4.295
  13. Lin, Q., Lu, J., Yanagisawa, H., Webb, R., Lyons, G.E., Richardson, J.A., and Olson, E.N. (1998). Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125, 4565-4574.
  14. Maiti, D., Xu, Z., and Duh, E.J. (2008). Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells. Invest Ophthalmol. Vis. Sci. 49, 3640-3648. https://doi.org/10.1167/iovs.08-1760
  15. Molkentin, J.D., and Olson, E.N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366-9373. https://doi.org/10.1073/pnas.93.18.9366
  16. Papadopoulos, M.C., and Verkman, A.S. (2013). Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 14, 265-277. https://doi.org/10.1038/nrn3468
  17. Potthoff, M.J., and Olson, E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development 134, 4131-4140. https://doi.org/10.1242/dev.008367
  18. Preston, G.M., and Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. USA 88, 11110-11114. https://doi.org/10.1073/pnas.88.24.11110
  19. Rutkovskiy, A., Bliksoen, M., Hillestad, V., Amin, M., Czibik, G., Valen, G., Vaage, J., Amiry-Moghaddam, M., and Stenslokken, K.O. (2013). Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J. Mol. Cell Cardiol. 56, 22-33. https://doi.org/10.1016/j.yjmcc.2012.12.002
  20. Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M., and Verkman, A.S. (2005). Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786-792. https://doi.org/10.1038/nature03460
  21. Schwieger, M., Schuler, A., Forster, M., Engelmann, A., Arnold, M.A., Delwel, R., Valk, P.J., Lohler, J., Slany, R.K., Olson, E.N., et al. (2009). Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 114, 2476-2488. https://doi.org/10.1182/blood-2008-05-158196
  22. Shang, Y., Doan, C.N., Arnold, T.D., Lee, S., Tang, A.A., Reichardt, L.F., and Huang, E.J. (2013). Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-beta-TAK1- dependent mechanism. PLoS Biol. 11, e1001527. https://doi.org/10.1371/journal.pbio.1001527
  23. Stigliano, C., Aryal, S., de Tullio, M.D., Nicchia, G.P., Pascazio, G., Svelto, M., and Decuzzi, P. (2013). siRNA-chitosan complexes in poly(lactic-co-glycolic acid) nanoparticles for the silencing of aquaporin-1 in cancer cells. Mol. Pharm. 10, 3186-3194. https://doi.org/10.1021/mp400224u
  24. Tradtrantip, L., Tajima, M., Li, L., and Verkman, A.S. (2009). Aquaporin water channels in transepithelial fluid transport. J. Med. Invest 56, 179-184. https://doi.org/10.2152/jmi.56.179
  25. Verkman, A.S. (2008). Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin. Nephrol. 28, 217-226. https://doi.org/10.1016/j.semnephrol.2008.03.004
  26. Verkman, A.S., and Mitra, A.K. (2000). Structure and function of aquaporin water channels. Am J. Physiol. Renal. Physiol. 278, F13-28.
  27. Verkman, A.S., Ratelade, J., Rossi, A., Zhang, H., and Tradtrantip, L. (2011). Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol. Sin. 32, 702-710. https://doi.org/10.1038/aps.2011.27
  28. Verkman, A.S., Anderson, M.O., and Papadopoulos, M.C. (2014). Aquaporins: important but elusive drug targets. Nat. Rev. Drug Discov. 13, 259-277. https://doi.org/10.1038/nrd4226
  29. Xiao, J., Zhou, Y., Lai, H., Lei, S., Chi, L.H., and Mo, X. (2013). Transcription factor NF-Y is a functional regulator of the transcription of core clock gene Bmal1. J. Biol. Chem. 288, 31930-31936. https://doi.org/10.1074/jbc.M113.507038
  30. Xu, Z., Gong, J., Maiti, D., Vong, L., Wu, L., Schwarz, J.J., and Duh, E.J. (2012). MEF2C ablation in endothelial cells reduces retinal vessel loss and suppresses pathologic retinal neovascularization in oxygen-induced retinopathy. Am. J. Pathol. 180, 2548-2560. https://doi.org/10.1016/j.ajpath.2012.02.021

Cited by

  1. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants vol.7, 2016, https://doi.org/10.3389/fpls.2016.01566
  2. Endothelial Aquaporins and Hypomethylation: Potential Implications for Atherosclerosis and Cardiovascular Disease vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010130
  3. miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00463
  4. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2) Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051498