Modification of Water-borne Polyurethane Using Benzophenone Crosslinker

Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질

  • Kim, HyeokJin (Research Center for Green Fine Chemicals, KRICT) ;
  • Kim, Jin Chul (Research Center for Green Fine Chemicals, KRICT) ;
  • Chang, SangMok (Dept. Of Convergence Science & Technology, Dong-A University) ;
  • Seo, BongKuk (Research Center for Green Fine Chemicals, KRICT)
  • 김혁진 (한국화학연구원 그린정밀화학연구센터) ;
  • 김진철 (한국화학연구원 그린정밀화학연구센터) ;
  • 장상목 (동아대학교 융합과학기술학과) ;
  • 서봉국 (한국화학연구원 그린정밀화학연구센터)
  • Received : 2016.02.12
  • Accepted : 2016.03.30
  • Published : 2016.04.10


Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.


  1. K. L. Noble, Waterborne polyurethanes, Prog. Org. Coat., 32, 131-136 (1997).
  2. B. K. Kim, Aqueous polyurethane dispersions, Colloid. Polym. Sci., 274, 599-611 (1996).
  3. D. Dieterich, Neuere wassrige PUR-Systeme, Angew. Makromol. Chem., 98, 133-165 (1981).
  4. S. M. Seyed Mohaghegh, M. Barikani, and A. A. Entezami, Preparation and Properties of Aqueous Polyurethane Dispersions J. Iran. Polym., 14, 163-167 (2005).
  5. J. Y. Park, B. Y. Jeong, J. M. Cheon, C. S. Ha, and J. H. Chun, Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE), J. Adhes. Interface., 16, 22-28 (2015).
  6. B. K. Kim, D. S. Lee, C. H. Do, and H. M. Jeong, Polyurethane, Korea Polyurethane Society, Korea (2006).
  7. H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, and Q. Guo, UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties, Prog. Org. Coat., 73, 45-53 (2012).
  8. Y. J. Sim, E. K. Seo, G. J. Choi, S. J. Yoon, and J. H. Jang, UV-induced Crosslinking of Poly(vinyl acetate) Films Containing Benzophenone, Text. Color. Finish., 21, 33-38 (2009).
  9. T. Zhang, W. Wu, X. Wang, and Y. Mu. Effect of average functionality on properties of UV-curable waterborne polyurethaneacrylate, Prog. Org. Coat., 68, 201-207 (2010).
  10. H. D. Hwang, C. H. Park, J. I. Moon, H. J. Kim, and T. Masubuchi, UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion, Prog. Org. Coat., 72, 663-675 (2011).
  11. H. D. Kim and H. J. Kim, UV-curable low surface energy fluorinated polycatbonate-based polyurethane dispersion, J. Colloid Interface Sci., 362, 274-284 (2011).
  12. J. W. Rosthauser, Process for coating aqueous dispersion of epoxy resin and blocked polyisocyanate containing chemically incorporated anionic hydrophilic group, US Patent 06,429,708 (1985).
  13. P. J. Peruzzo, P. S. Anbinder, O. R. Pardini, J. Vega, C. A. Costa, F. Galembeck, and J. I. Amalvy, Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems, Prog. Org. Coat., 72, 429-437 (2011).
  14. Y. Zhang, A. Asif, and W. Shi, Highly branched polyurethane acrylates and their waterborne UV curing coating, Prog. Org. Coat., 71, 295-301 (2011).
  15. M. G. Hong, W. Y. Huh, T. G. Byun, and K. C. Song, Preparation of Atistatic Coating Solutions by Blending Aniline Terminated Waterborne Polyurethane with PEDOT/PSS, Kor. Chem. Eng. Res., 50, 614-620 (2012).
  16. M. M. Rahman and H. D. Kim, Synhesis and Characterization of Waterborne Polyurethane Adhesives Containing Different Amount of Ionic Group (I), J. Appl. Polm. Sci., 102, 5684-5691 (2006).
  17. H. S. Kim, J. S. You, J. O. Kwon, J. S. Kim, T. S. Lee, S. T. Noh, Y. O. Jang, D. K. Kim, and S. K. Kwon, Phase ehaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol, Appl. Chem. Eng., 21, 377-384 (2010).
  18. V. D. Athawale and M. A. Kulkarni, Polyester polyols for waterborne polyurethane and hybrid dispersions, Prog. Org. Coat., 67, 44-54 (2010).
  19. S. K. Christensen, M. C. Chiappelli, and R. C. Hayward, Gelation of Copolymers with Pendent Benzophenone Photo-Cross-Linkers, Macromol., 45, 5237-5246 (2012).
  20. O. Paucker, C. A. Naumann, J. Ruhe, W. Knoll, and C. W. Frank, Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivatives, J. Am. Chem. Soc., 121, 8766-8770 (1999).
  21. D. B. Hall, P. Underhell, and J. M. Torkelson, Spin coating of thin and ultrathin polymer films, Polym. Eng. Sci., 38, 2039-2045 (1998).
  22. G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2nd ed., 15, Hanser Gardner, Cincinnati, Ohio, U.S.A. (1996).