DOI QR코드

DOI QR Code

Electrohydrodynamic Instability at Surface of Block Copolymer/Titania Nanorods Thin Film

타이타니아 나노막대가 포함된 블록 공중합체 박막 표면의 전기장하에서의 불안정성 거동 연구

  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
  • 배준원 (동덕여자대학교 응용화학과)
  • Received : 2016.02.18
  • Accepted : 2016.03.26
  • Published : 2016.04.10

Abstract

The influence of titania nanorods with an average diameter of 10 nm and an average length of 30 nm on the electrohydrodynamic instability of block copolymer (polystyrene-b-poly(2-vinylpyridine)) thin film was investigated in this article. The presence of titania nanorods increased the dielectric constant of the film, which resulted in a systematic reduction in the wavelength of the surface instability. Cross-sectional transmission electron microscopy analysis indicated that the migration/aggregation of titania nanorods did not occur as a result of the applied electric field. This work can provide a simple route to the pattern formation using electrohydrodynamic instability with an aid of nanoparticles.

Acknowledgement

Supported by : 동덕여자대학교

References

  1. A. Vrij, Possible mechanism for the spontaneous rupture of thin, free liquid films, Discuss Faraday Soc., 42, 23-33 (1966). https://doi.org/10.1039/df9664200023
  2. M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci., 90, 220-228 (1982). https://doi.org/10.1016/0021-9797(82)90415-5
  3. A. Sharma and E. Ruckenstein, Finite-amplitude instability of thin free and wetting films: prediction of lifetimes, Langmuir, 2, 480-494 (1986). https://doi.org/10.1021/la00070a019
  4. G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68, 75-78 (1992). https://doi.org/10.1103/PhysRevLett.68.75
  5. R. Yerushalmi-Rosen, J. Klein, and L. Fetters, Suppression of rupture in thin, nonwetting liquid films, Science, 263, 793-795 (1994). https://doi.org/10.1126/science.263.5148.793
  6. A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81, 3463-3466 (1998). https://doi.org/10.1103/PhysRevLett.81.3463
  7. M. Boltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner, Surface-induced structure formation of polymer blends on patterned substrates, Nature, 391, 877-879 (2000).
  8. L. F. Pease III and W. B. Russel, Limitations on length scales for electrostatically induced submicrometer pillars and holes, Langmuir, 20, 795-804 (2004). https://doi.org/10.1021/la035022o
  9. M. D. Morariu, N. E. Voicu, E. Schaffer, Z. Lin, and T. P. Russell, Hierarchical structure formation and pattern replication induced by an electric field, Nature Mater., 2, 48-52 (2003). https://doi.org/10.1038/nmat789
  10. T. Xu, C. J. Hawker, and T. P. Russell, Interfacial energy effects on the electric field alignment of symmetric diblock copolymers, Macromolecules, 36, 6178-6182 (2003). https://doi.org/10.1021/ma034511s
  11. H. Xiang, Y. Lin, and T. P. Russell, Electrically induced patterning in block copolymer films, Macromolecues, 37, 5358-5363 (2004). https://doi.org/10.1021/ma049888s
  12. K. A. Leach, Z. Lin, and T. P. Russell, Early stages in the growth of electric field-induced surface fluctuations, Macromolecues, 38, 4868-4875 (2005). https://doi.org/10.1021/ma048157p
  13. J. Bae, E. Glogowski, S. Gupta, W. Chen, T. Emrick, and T. P. Russell, Effect of nanoparticles on the electrohydrodynamic instabilities of polymer/nanoparticle thin films, Macromolecues, 41, 2722-2726 (2008). https://doi.org/10.1021/ma702750y
  14. J. Bae, Electrohydrodynamic instabilities of polymer thin films: Filler effect, J. Ind. Eng. Chem., 18, 378-382 (2012). https://doi.org/10.1016/j.jiec.2011.11.049
  15. J. Bae and S. H. Cha, Effect of nanoparticle surface functionality on microdomain orientation in block copolymer thin films under electric field, Polymer, 55, 2014-2020 (2014). https://doi.org/10.1016/j.polymer.2014.02.054
  16. J. Bae, S. J. Park, O. S. Kwon, and J. Jang, The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field, J. Mater. Sci., 49, 4323-4331 (2014). https://doi.org/10.1007/s10853-014-8128-0
  17. X. Chen and S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007). https://doi.org/10.1021/cr0500535
  18. Y. Lin et al., Self-directed self-assembly of nanoparticle/copolymer mixtures, Nature, 434, 55-59 (2005). https://doi.org/10.1038/nature03310
  19. N. Wu, L. F. Pease III, and W. B. Russell, Toward Large-Scale Alignment of Electrohydrodynamic Patterning of Thin Polymer Films, Adv. Funct. Mater., 16, 1992-1999 (2006). https://doi.org/10.1002/adfm.200600092
  20. S. Gupta, Q. Zhang, T. Emrick, A. C. Balazs, and T. P. Russell, Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures, Nature Mater., 5, 229-233 (2006). https://doi.org/10.1038/nmat1582