DOI QR코드

DOI QR Code

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts

이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성

  • Kim, Su-Jung (Division of Advanced Material Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical engineering, Kongju National University) ;
  • Han, Jeongsik (Agency for Defense Development) ;
  • Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
  • Received : 2016.01.29
  • Accepted : 2016.02.02
  • Published : 2016.04.10

Abstract

Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.

Acknowledgement

Grant : BK21플러스

Supported by : 공주대학교

References

  1. H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
  2. T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. Propul. Power, 19, 1089-1107 (2003). https://doi.org/10.2514/2.6946
  3. Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005). https://doi.org/10.1007/s11144-005-0247-9
  4. I. Palmova, J. Kose, J. Schongut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001). https://doi.org/10.1016/S0009-2509(00)00307-9
  5. Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
  6. L. G. Cannell, High density fuels, US Patent 4,059,644 (1977).
  7. M. Y. Huang, J. C. Wu, F. S. Shieu, and J. J. Lin, Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid, Catal. Commun, 10, 1747-1751 (2009). https://doi.org/10.1016/j.catcom.2009.05.030
  8. J. Kim, J.-Y. Kim, E. Park, J. Han, T. S. Kwon, Y.-K. Park, and J.-K. Jeon, Isomerization of endo-tetrahydrodicyclopentadiene over Y zeolite catalysts, Appl. Chem. Eng., 25(1), 66-71 (2014). https://doi.org/10.14478/ace.2013.1107
  9. S.-G. Kim, J. Han, J.-K. Jeon, and J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014). https://doi.org/10.1016/j.fuel.2014.07.066
  10. D. H. Kim, J.-S. Han, J.-K. Jeon, and J.-H. Yim, A study on the reaction pathway of isomerization of tetrahydrotricyclopentadiene using ionic liquid catalyst, Appl. Chem. Eng., 26(3), 366-371 (2015). https://doi.org/10.14478/ace.2015.1054
  11. J. S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. A: Chem., 214, 11-17 (2004). https://doi.org/10.1016/j.molcata.2003.11.029
  12. H. J. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: the state of arts, Appl. Chem. Eng., 21, 129-136 (2010).
  13. Y.-L. Yang and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Comm., 226-227 (2004).
  14. J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, A New family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834-10843 (1992). https://doi.org/10.1021/ja00053a020
  15. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998). https://doi.org/10.1021/ja974025i
  16. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Immobilisation of chloroaluminate ionic liquids on silica materials, Top. Catal., 14, 139-144 (2001).
  17. C. P. Mehnert, Supported ionic liquid catalysis, Chem. Eur. J., 11, 50-59 (2005). https://doi.org/10.1002/chem.200400683
  18. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids, Appl. Catal. A., 215, 185-190 (2001). https://doi.org/10.1016/S0926-860X(01)00531-2
  19. W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). https://doi.org/10.1016/j.cattod.2012.10.001
  20. W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). https://doi.org/10.1016/j.cattod.2012.10.001
  21. M.-Y. Huang, J.-C. Wu, F.-S. Shieu, and J.-J. Lin, Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts, J. Mol. Catal. A: Chem., 315, 69-75 (2010). https://doi.org/10.1016/j.molcata.2009.09.002
  22. K.-Y. Kwak M.-S. Kim, D.-W. Lee, Y.-H. Cho, J. S. Han, T. S. Kwon, and K.-Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014). https://doi.org/10.1016/j.fuel.2014.07.095

Cited by

  1. Synthesis of exo-tricyclopentadiene from endo-dicyclopentadiene over mesoporous aluminosilicate catalysts prepared from Y zeolite pp.1975-7220, 2018, https://doi.org/10.1007/s11814-018-0177-7