Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds

탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향

  • Ham, Eun-Kwang (Korea Institute of Carbon Convergence Technology) ;
  • Choi, Kyeong-Eun (Department of Practical Arts Education, Jeonju National University of Education) ;
  • Ko, Jae-Kyoung (Korea Institute of Convergence Textile) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology)
  • Received : 2016.01.23
  • Accepted : 2016.03.08
  • Published : 2016.04.10


In this work, the influence of milled carbon fiber direction on mechanical properties of milled carbon fibers/carbon blacks/natural rubber compounds was investigated. The compounds were prepared by adding the 6 phr milled carbon fibers (MCFs) and 40 phr carbon blacks (CBs) into the natural rubber. The MCFs were aligned in a parallel and orthogonal direction in the compounds using two-roll-mill machine. Mechanical properties of compounds were studied by tensile characteristics and tearing strength. As a result, the compounds showed higher tensile strength, 100%~300% modulus, and tearing strength than those of using any other compounds due to the aligning MCFs in parallel. Mechanical properties of the compounds reinforced with non-aligned MCFs were inferior to those of others. Consequently, the parallel aligned MCFs in the compounds led to an increase of tensile properties and improvement of tearing strength, resulted from MCFs with the high elastic modulus.


Grant : 탄소섬유/카본블랙을 이용한 탄성력이 강화된 탁구라켓용 러버 개발


  1. S. M. Hosseini and M. R. Kashani, Vulcanization Kinetics of Nano-Silica Filled Styrene Butadiene Rubber, Polymer, 55, 6426-6434 (2014).
  2. C. S. Ryu, C. K. Hong, C. W. Moon, and S. Y. Kaang, Effects of Particle Size and Structure of Fillers on the Friction and Wear Behavior of Filled Elastomer, Elastomer, 41, 194-204 (2006).
  3. K. D. Pyo and C. C. Park, A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole, Elastomers Compos., 46, 324-328 (2011).
  4. M. C. Li, Y. Zhang, and U. R. Cho, Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading, Mater. Des., 63, 565-574 (2014).
  5. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Graphene/Elastomer Nanocomposites, Carbon, 95, 460-484 (2015).
  6. N. Rattanasom, S. Prasertsri, and T. Ruangritnumchai, Comparison of the Mechanical Properties at Similar Hardness Level of Natural Rubber Filled with Various Reinforcing-Fillers, Polym. Test., 28, 8-12 (2009).
  7. Y. S. Cho and D. H. Cho, Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites, Elastomers Compos., 46, 186-194 (2011).
  8. F. Cataldo, Study on the Reinforcing Effect of Milled Carbon Fibers in a Natural Rubber Based Composite, J. Macromol. Sci. Part B, Phys., 47, 818-828 (2008).
  9. L. L. Wang, L. Q. Zhang, and M. Tian, Mechanical and Tribological Properties of Acrylonitrile-Butadiene Rubber Filled with Graphite and Carbon Black, Mater. Des., 39, 450-457 (2012).
  10. S. M. Kim, C. S. Nam, and K. J. Kim, TMTD, MBTS, and CBS Accelerator Effects on a Silica Filled Natural Rubber Compound upon Vulcanization Properties, Appl. Chem. Eng., 22, 144-148 (2011).
  11. A. I. Dacikj, G. B. Gaceva, S. Rooj, S. Wiebner, and G. Heinrich, Fine Tuning of the Dynamic Mechanical Properties of Natural Rubber/Carbon Nanotube Nanocomposites by Organically Modified Montmorillonite: A First Step in Obtaining High-Performance Damping Material Suitable for Seismic Application, Appl. Clay Sci., 118, 99-106 (2015).
  12. S. M. Park, Y. W. Lim, C. H. Kim, D. J. Kim, W. J. Moon, J. H. Kim, J. S. Lee, C. K. Hong, and G. Seo, Effect of Carbon Nanotubes with Different Lengths on Mechanical and Electrical Properites of Silica-Filled Styrene Butadiene Rubber Compounds, J. Ind. Eng. Chem., 19, 712-719 (2013).
  13. C. Y. Choi, S. M. Kim, Y. H. Park, M. K. Jang, J. W. Nah, and K. J. Kim, Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties, App. Chem. Eng., 22, 411-415 (2011).
  14. B. Omnes, S. Thuillier, P. Pilvin, Y. Grohens, and S. Gillet, Effective Properties of Carbon Black Filled Natural Rubber: Experiments and Modeling, Compos. A, 39, 1141-1149 (2008).
  15. S. J. Park, M. K. Seo, M. L. Park, and H. Y. Kim, 1st ed., 31-202, Carbon Materials, Myoungmoon, Seoul, Korea (2015).
  16. W. Luheng, D. Tianhuai, and W. Peng, Influence of Carbon Black Concentration on Piezoresistivity for Carbon-Black-Filled Silicone Rubber Composite, Carbon, 47, 3151-3157 (2009).
  17. S. J. Park, K. S. Cho, M. Zaborski, and L. Slusarski, Filler-Elastomer Interactions. 10. Ozone Treatment on Interfacial Adhesion of Carbon Blacks/NBR Compounds, Elastomer, 38, 139-146 (2003).
  18. Y. Hoshikawa, B. An, S. Kashihara, T. Ishii, M. Ando, S. Fujisawa, K. Hayakawa, S. Hamatani, H. Yamada, and T. Kyotani, Analysis of the Interaction Between Rubber Polymer and Carbon Black Surfaces by Efficient Removal of Physisorbed Polymer from Carbon-Rubber Composites, Carbon, 99, 148-156 (2016).
  19. C. Unterweger, J. Duchoslav, D. Stifter, and C. Furst, Characterization of Carbon Fiber Surfaces and Their Impact on the Mechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites, Compos. Sci. Technol., 108, 41-47 (2015).
  20. S. R. Ryu and D. J. Lee, Effects of Short-Fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber, Compos. Res., 16, 18-25 (2003).
  21. H. J. Won, D. G. Seong, J. W. Lee, and M. K. Um, A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites, Compos. Res., 27, 52-58 (2014).
  22. K. C. Chae, S. H. Jo, and E. G. Kim, 3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates, Compos. Res., 12, 23-30 (1999).
  23. J. C. Halpin and J. L Kardos, The Halpin-Tsai Equations: A Review, Polym. Eng. Sci., 16, 344-352 (1976).
  24. E. Giner, A. Vercher, M. Marco, and C. Arango, Estimation of the Reinforcement Factor ${\zeta}$ for Calculating the Transverse Stiffness $E_2$ with the Halpin-Tsai Equations Using the Finite Element Method, Compos. Struct., 124, 402-408 (2015).
  25. C. W. Nah, J. M. Rhee, W. D. Kim, S. Y. Kaang, Y. W. Chang, and S. J. Park, Effects of Chemical Surface Modification of Carbon Black on Vulcanization and Mechanical Properties of Styrene- Butadiene Rubber Compound, Elastomer, 36, 44-51 (2001).
  26. L. Jong, Influence of Protein Hydrolysis on the Mechanical Properties of Natural Rubber Composites Reinforced with Soy Protein Particles, Ind. Crops Prod., 65, 102-109 (2015).
  27. T. Theppradit, P. Prasassarakich, and S. Poompradub, Surface Modification of Silica Particles and Its Effects on Cure and Mechanical Properties of the Natural Rubber Composites, Mater. Chem. Phys., 148, 940-948 (2014).
  28. J. F. Fu, W. Q. Yu, X. Dong, L. Y. Chen, H. S. Jia, L. Y. Shi, Q. D. Zhong, and W. Deng, Mechanical and Tribological Properties of Natural Rubber Reinforced with Carbon Blacks and $Al_2O_3$ Nanoparticles, Mater. Des., 49, 336-346 (2013).
  29. I. M. Meththananda, S. Parker, M. P. Patel, and M. Braden, The Relationship Between Shore Hardness of Elastomeric Dental Materials and Young's Modulus, Dent. Mater., 25, 956-959 (2009).
  30. J. H. Sung, S. R. Ryu, and D. J. Lee, Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black, Trans. Korean Soc. Mech. Eng. A, 35, 999-1005 (2011).