DOI QR코드

DOI QR Code

Effect of Ca Ion on the SCR Reaction over VOx/TiO2

Ca 이온이 VOx/TiO2 SCR 반응에 미치는 영향 연구

  • Kim, Geo Jong (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
  • 김거종 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지공학과)
  • Received : 2016.01.14
  • Accepted : 2016.02.22
  • Published : 2016.04.10

Abstract

In this study, we investigated the cause of the decrease in activities of $VO_x/TiO_2$ SCR catalyst used for the burner reactor at a scale of $150000Nm^3/hr$ using X-ray diffraction (XRD), brunauer-emmett-teller (BET), atomic emission spectroscopy inductively coupled plasma (AES ICP), $H_2$ temperature programmed reduction ($H_2$-TPR), and $NH_3$ temperature programmed desorption ($NH_3$-TPD) analysis. Since the crystallization of the $VO_x$ and phase transition of $TiO_2$ did not occur, it was concluded that the catalyst was not deactivated by the thermal effect. In addition, from the elemental analysis showing that a large quantity of calcium was detected but not sulfur, the deactivation process of the $VO_x/TiO_2$ SCR catalyst was mainly caused by Ca but not by $SO_2$. The calcium was also found to decrease the catalytic activity by means of reducing $NH_3$ adsorption.

Acknowledgement

Supported by : 경기대학교

References

  1. S.-U. Park and Y.-H. Lee, Spatial distribution of wet deposition of nitrogen in South Korea, Atmos. Environ., 36, 619-628 (2002). https://doi.org/10.1016/S1352-2310(01)00489-7
  2. K. Skalska, J. S. Miller, and S. Ledakowicz, Trends in NOx abatement: A review, Sci. Total Environ., 408, 3976-3989 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001
  3. G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous catalysis, 2nd ed., 2352-2385, Wiley-VCH, German (2008).
  4. M. Calatayud and C. Minot, Effect of alkali doping on a $V_2O_5$/$TiO_2$ catalyst from periodic DFT calculations, J. Phys. Chem. C, 111, 6411-6417 (2007). https://doi.org/10.1021/jp068373v
  5. L. Chen, J. Li, and M. Ge, The poisoning effect of alkali metals doping over nano $V_2O_5$-$WO_3$$TiO_2$ catalysts on selective catalytic reduction of NOx by $NH_3$, Chem. Eng. J., 170, 531-537 (2011). https://doi.org/10.1016/j.cej.2010.11.020
  6. M. Klimczak P. Kern, T. Heinzelmann, M. Lucas, and P. Claus, High-throughput study of the effects of inorganic additives and poisons on $NH_3$-SCR catalysts-Part I:$V_2O_5$-$WO_3$$TiO_2$ catalysts, Appl. Catal. B-Environ., 95, 39-47 (2010). https://doi.org/10.1016/j.apcatb.2009.12.007
  7. Q. Wan, L. Duan, J. Li, L. Chen, K. He, and J. Hao, Deactivation performance and mechanism of alkali (earth) metals on $V_2O_5$-$WO_3$$TiO_2$ catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas, Catal. Today, 175, 189-195 (2011). https://doi.org/10.1016/j.cattod.2011.03.011
  8. K. H. Park, J. Y. Lee, S. H. Hong, S. H. Choi, and S. C. Hong, A study on the deactivation of commercial $deNO_x$ catalyst in fired power plant, Appl. Chem. Eng., 19, 376-381 (2008).
  9. A. Satsuma, S. Takenaka, T. Tanaka, and S. Nojima, Studies on the preparation of supported metal oxide catalyst using JRC-reference catalysts; II. Vanadia-titania catalyst: effect of starting solution and phase of titania, Appl. Catal. A-Gen., 232, 93-106 (2002). https://doi.org/10.1016/S0926-860X(02)00089-3
  10. E. M. Serwicka, Surface area and porosity, X-ray diffraction and chemical analyses, Catal. today, 56, 335-346 (2000). https://doi.org/10.1016/S0920-5861(99)00293-X
  11. P. Forzatti, I. Nova, and A. Beretta, Catalytic properties in $deNO_x$ and $SO_2$-$SO_3$ reactions, Catal. today, 56, 431-441 (2000). https://doi.org/10.1016/S0920-5861(99)00302-8
  12. F. Tang, B. Xu, H. Shi, J. Qiu, and Y. Fan, The poisoning effect of $Na^+$ and $Ca^{2+}$ ions doped on the $V_2O_5$/$TiO_2$ catalysts for selective catalytic reduction of NO by $NH_3$, Appl. Catal. B-Environ., 94, 71-76 (2010). https://doi.org/10.1016/j.apcatb.2009.10.022
  13. T. Shikada and K. Fujimoto, Effect of added alkali salts on the activities of supported vanadium oxide catalysts for nitric oxide reduction, Chem. Lett., 12, 77-80 (1983). https://doi.org/10.1246/cl.1983.77
  14. D. Nicosia, I. Czekaj, and O. Krocher, Chemical deactivation of $V_2O_5$/$WO_3$$TiO_2$ SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: part II. Characterization, Appl. Cata. B-Environ., 77, 228-236 (2008). https://doi.org/10.1016/j.apcatb.2007.07.032
  15. O. Krocher and M. Elsener, Chemical deactivation of $V_2O_5$/$WO_3$$TiO_2$ SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: I. Catalytic studies, Appl. Cata. B-Environ., 77, 215-227 (2008). https://doi.org/10.1016/j.apcatb.2007.04.021
  16. D. Nicosia, M. Elsener, O. Krocher, and P. Jansohn, Basic investigation of the chemical deactivation of $V_2O_5$/$WO_3$$TiO_2$ SCR catalysts by potassium, calcium, and phosphate, Top. Catal., 42, 333-336 (2007).
  17. L. Lietti, P. Forzatti, and F. Bregani, Steady-State and Transient Reactivity Study of $TiO_2$-Supported $V_2O_5$-$WO_3$https://doi.org/10.1021/ie960158l
  18. A. Sorrentino, S. Rega, D. Sannino, A. Magliano, P. Ciambelli, and E. Santacesaria, Performances of $V_2O_5$-based catalysts obtained by grafting vanadyl tri-isopropoxide on $TiO_2$-$SiO_2$ in SCR, Appl. Catal. A-Gen., 209, 45-57 (2001). https://doi.org/10.1016/S0926-860X(00)00742-0