Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선

  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Bae, Tae-Sung (Korea Basic Science Institute (KBSI) Jeonju Center) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 박미선 (충남대학교 대학원 바이오응용화학과) ;
  • 배태성 (한국기초과학지원연구원) ;
  • 이영석 (충남대학교 대학원 바이오응용화학과)
  • Received : 2015.10.28
  • Accepted : 2015.12.10
  • Published : 2016.04.10


In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.


Supported by : 한국기초과학지원연구원


  1. X. Jiang, Y. Wu, X. Mao, X. Cui, and L. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite, Sens. Actuators B, 153, 158-163 (2011).
  2. S. K. Vashist, D. Zheng, K. A. Rubeaan, J. H. T. Luong, and F. S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: A review, Anal. Chim. Acta, 703, 124-136 (2011).
  3. W. Zhang, D. Ma, and J. Du, Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose, Talanta, 120, 362-367 (2014).
  4. C. Wang and H. Huang, Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+-tripropylamine system, Anal. Chim. Acta, 498, 61-68 (2003).
  5. X. Tian, S. Lian, L. Zhao, X. Chen, Z. Huang, and X. Chen, A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode, J. Solid State Electrochem., 18, 2375-2382 (2014).
  6. X. Lv, X. Wang, D. Huang, C. Niu, and G. Zeng, Q. Niu, Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose, Talanta, 129, 20-25, (2014).
  7. S. Park, H. Boo, and T. D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta, 556, 46-57 (2006).
  8. Y. -W. Hsu, T. -K. Hsu, C. -L. Sun, Y. -T. Nien, N. -W. Pu, and M. -D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta, 82, 152-157 (2012).
  9. R. K. Shervedani, A. H. Mehrjardi, and N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor, Bioelectrochemistry, 69, 201-208 (2006).
  10. L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin, Amperometric glucose biosensor based on silver nanowires and glucose oxidase, Sens. Actuators B, 176, 9-14 (2013).
  11. F. Kong, S. Gu, W. Li, T. Chen, Q. Xu, and W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination, Biosens. Bioelectron., 56, 77-82 (2014).
  12. K. -C. Lin, Y. -C. Lin, and S. -M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles, Electrochim. Acta, 96, 164-172 (2013).
  13. L. Luo, L. Zhu, and Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode, Bioelectrochemistry, 88, 156-163 (2012).
  14. Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, 133, 126-232 (2008).
  15. S. A. Kumar, H. W. Cheng, S. M. Chen, and S. F. Wang, Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing, Mater. Sci. Eng. C, 30, 86-91 (2010).
  16. C. X. Wang, L. W. Yin, L. Y. Zhang, and R. Gao, Ti/$TiO_2$ Nanotube Array/Ni Composite Electrodes for Nonenzymatic Amperometric Glucose Sensing, J. Phys. Chem. C, 114, 4408-4413 (2010).
  17. X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, and Y. Soejima, Observation of Charge Stripes in Cupric Oxide, Phys. Rev. Lett., 85, 5170-5173 (2000).
  18. J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen, and S. H. Yang, Temperature dependence of field emission from cupric oxide nanobelt films, Appl. Phys. Lett., 83, 746-748 (2003).
  19. A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, and P. K. Patanjali, Response speed of $SnO_2$-based $H_2S$ gas sensors with CuO nanoparticles, Appl. Phys. Lett., 84, 1180-1182 (2004).
  20. T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, and S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method, Electrochem. Commun., 4, 468-471 (2002).
  21. Y. S. Lee and K. H. Yoon, Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites, Carbon Lett., 16, 86-92 (2015).
  22. M. Y. Koo, H. C. Shin, W. -S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014).
  23. T. Saito, K. Matsushige, and K. Tanake, Chemical treatment and modification of multi-walled carbon nanotubes, Physica B, 323, 280-283 (2002).
  24. K. L. Chopra, Thin Film Phenomena, Wiley, New York (1969).
  25. J. S. Im, J. G. Kim, T. -S. Bae, H. -R. Yu, and Y. -S. Lee, Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode, Sens. Actuators B, 158, 151-158 (2011).
  26. J. Wang and W. D. Zhang, Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose, Electrochim. Acta, 56, 7510-7516 (2011).
  27. H. Wei, J. J. Sun, L. Guo, X. Li, and G. N. Chen, Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode, Chem. Commun., 15, 2842-2844 (2009).
  28. J. M. Marioli and T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochim. Acta., 37, 1187-1197 (1992).
  29. J. S. Im, J. Yun, J. G. Kim, T. -S. Bae, and Y. -S. Lee, The effects of carbon nanotube addition and oxyfluorination on the glucose- sensing capabilities of glucose oxidase-coated carbon fiber electrodes, Appl. Surf. Sci., 258, 2219-2225 (2012).
  30. M. Gougis, A. Tabet-Aoul, D. Ma, and M. Mohamedi, Laser synthesis and tailor-design of nanosized gold onto carbonnanotubes for non-enzymatic electrochemical glucose sensor, Sens. Actuators B, 193, 363-369 (2014).
  31. R. R. Adzic, M. W. Hsiao, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces, J. Electroanal. Chem. Interfacial. Electrochem., 260, 475-485 (1989).
  32. J. E. Oliveira, M. L. H. Capparelli, E. S. Medeiros, and V. Zucolotto, Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors, Biosensors, 2, 70-82 (2012).
  33. L. C. Jiang and W. D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 25, 1402-1407 (2010).
  34. T. Kawasaki, H. Akanuma, and T. Y. Yamanouchi, Increased Fructose Concentrations in Blood and Urine in Patients With Diabetes, Diab. Care, 25, 353-357 (2002).
  35. B. Vient, B. Panzini, M. Boucher, and J. Massicotte, Automated Enzymatic Assay for the Determination of Sucrose in Serum and Urine and Its Use as a Marker of Gastric Damage, Clin. Chem., 44, 2369-2371 (1998).
  36. E. Reitz, W. Z. Jia, M. Gentile, Y. Wang, and Y. Lei, CuO nanospheres based nonenzymatic glucose sensor, Electroanalysis, 20, 2482-2486 (2008).
  37. S. Hajar, K. Mahdi, and A. E. Ali, Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode, Chinese J. Catal., 34, 1208-1215 (2013).