Applied Chemistry for Engineering (공업화학)
- Volume 27 Issue 2
- /
- Pages.135-144
- /
- 2016
- /
- 1225-0112(pISSN)
- /
- 2288-4505(eISSN)
DOI QR Code
Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass
목질계 바이오매스 전처리 공정에서 발생하는 리그닌 부산물 활용 기술 개발 동향
- Jung, Jae Yeong (Department of chemical engineering, Kyung Hee University) ;
- Lee, Yumi (Department of chemical engineering, Kyung Hee University) ;
-
Lee, Eun Yeol
(Department of chemical engineering, Kyung Hee University)
- Received : 2016.02.17
- Accepted : 2016.03.18
- Published : 2016.04.10
Abstract
Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the volume of cellulosic bioethanol increases. Lignin is a natural aromatic polymer and has very complex chemical structures with chemical functional groups. Chemical modification of lignin such as oxypropylation and epoxidation has also been applied to the production of value-added bioplastics such as polyurethane and polyester with enhanced thermal and mechanical properties. In addition, lignin can be used for carbon fiber production in automobile industries. This review highlights recent progresses in utilizations and chemical modifications of lignin for the production of bioplastics, resins, and carbon fiber.
File
Acknowledgement
Supported by : 한국산업기술평가관리원(KEIT)
References
- H. J. Eom, Y. K. Hong, S. H. Chung, Y. M. Park, and K. Y. Lee, Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region, J. Energy Eng., 20, 36-43 (2011). https://doi.org/10.5855/ENERGY.2011.20.1.036
- J. A. Melero, J. Iglesias, and A. Garcia, Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energy Environ. Sci., 5, 7393-7420 (2012). https://doi.org/10.1039/c2ee21231e
- J. Y. Zhu and X. J. Pan, Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation, Bioresour. Technol., 101, 4992-5002 (2010). https://doi.org/10.1016/j.biortech.2009.11.007
- M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromycesmarxianus CECT 10875, Process Biochem., 39, 1843-1848 (2004). https://doi.org/10.1016/j.procbio.2003.09.011
- Z. P. Lei, Z. Q. Hu, H. F. Shui, S. B. Ren, Z. C. Wang, S. G. Kang, and C. X. Pan, Pyrolysis of lignin following ionic liquid pretreatment at low temperature, Fuel Process. Technol., 138, 612-615 (2015). https://doi.org/10.1016/j.fuproc.2015.06.049
- S. Kubo and J. F. Kadla, Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties, J. Polym. Environ., 13, 97-105 (2005). https://doi.org/10.1007/s10924-005-2941-0
- M. Kleinert and T. Barth, Phenols from lignin, Chem. Eng. Technol., 31, 736-745 (2008). https://doi.org/10.1002/ceat.200800073
- X. Luo, A. Mohanty, and M. Misra, Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane, Ind. Crop. Prod., 47, 13-19 (2013). https://doi.org/10.1016/j.indcrop.2013.01.040
- S. Sen, S. Patil, and D. S. Argyropoulos, Thermal properties of lignin in copolymers, blends, and composites: a review, Green Chem., 17, 4862-4887 (2015). https://doi.org/10.1039/C5GC01066G
- E. Dorrestijn, L. J. Laarhoven, I. W. Arends, and P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrolysis, 54, 153-192 (2000). https://doi.org/10.1016/S0165-2370(99)00082-0
- A. K. Sangha, J. M. Parks, R. F. Standaert, A. Ziebell, M. Davis, and J. C. Smith, Radical coupling reactions in lignin synthesis: a density functional theory study, J. Phys. Chem. B, 116, 4760-4768 (2012).
- F. S. Chakar and A. J. Ragauskas, Review of current and future softwood kraft lignin process chemistry, Ind. Crop. Prod., 20, 131-141 (2004). https://doi.org/10.1016/j.indcrop.2004.04.016
- P. Azadi, O. R. Inderwildi, R. Farnood, and D. A. King, Liquid fuels, hydrogen and chemicals from lignin: a critical review, Renew. Sust. Energ. Rev., 21, 506-523 (2013). https://doi.org/10.1016/j.rser.2012.12.022
- S. Laurichesse and L. Averous, Chemical modification of lignins: towards biobased polymers, Prog. Polym. Sci., 39, 1266-1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004
- A. Lee and Y. Deng, Green polyurethane from lignin and soybean oil through non-isocyanate reactions Eur. Polym. J., 63, 67-73 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.023
- Y. Park, W. O. Doherty, and P. J. Halley, Developing lignin-based resin coatings and composites, Ind. Crop. Prod., 27, 163-167 (2008). https://doi.org/10.1016/j.indcrop.2007.07.021
- B. Zhao, G. Chen, Y. Liu, K. Hu, and R. Wu, Synthesis of lignin base epoxy resin and its characterization, J. Mater. Sci. Lett., 20, 859-862 (2001). https://doi.org/10.1023/A:1010975132530
- Y. J. Jo, S. H. Choi, and E. Y. Lee, Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass, Appl. Chem. Eng., 24, 579-586 (2013). https://doi.org/10.14478/ace.2013.1081
- H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose, and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim. Acta, 431, 155-160 (2005). https://doi.org/10.1016/j.tca.2005.01.065
- R. Auvergne, S. Caillol, G. David, B. Boutevin, and J. P. Pascault, Biobased thermosetting epoxy: present and future, Chem. Rev., 114, 1082-1115 (2013).
- L. Pilato, Phenolic resins: 100Years and still going strong, React. Funct. Polym., 73, 270-277 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.07.008
- K. H. Kim, Y. J. Jo, C. G. Lee, and E. Y. Lee, Solvothermal liquefaction of microalgalTetraselmis sp. biomass to prepare biopolyols by using PEG# 400-blended glycerol, Algal Res., 12, 539-544 (2015). https://doi.org/10.1016/j.algal.2015.08.007
- K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Thermal properties of solvolysis lignin-derived polyurethanes, Polym. Adv. Technol., 3, 151-155 (1992). https://doi.org/10.1002/pat.1992.220030402
- S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227-233 (2012). https://doi.org/10.1016/j.biortech.2011.09.125
- Y. Li and A. J. Ragauskas, Kraft lignin-based rigid polyurethane foam, J. Wood Chem. Technol., 32, 210-224 (2012). https://doi.org/10.1080/02773813.2011.652795
- N. Mahmood, Z. Yuan, J. Schmidt, and C. C. Xu, Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters, Bioresour. Technol., 139, 13-20 (2013). https://doi.org/10.1016/j.biortech.2013.03.199
- S. Hu, X. Luo, and Y. Li, Polyols and polyurethanes from the liquefaction of lignocellulosic biomass, Chem. Sus. Chem., 7, 66-72 (2014). https://doi.org/10.1002/cssc.201300760
- E. B. da Silva, M. Zabkova, J. D. Araujo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin, Chem. Eng. Res. Des., 87, 1276-1292 (2009). https://doi.org/10.1016/j.cherd.2009.05.008
- Y. Jin, X. Ruan, X. Cheng, and Q. Lu, Liquefaction of lignin by polyethyleneglycol and glycerol, Bioresour. Technol., 102, 3581-3583 (2011). https://doi.org/10.1016/j.biortech.2010.10.050
- H. Q. Li, Q. Shao, H. Luo, and J. Xu, Polyurethane foams from alkaline lignin-based polyether polyol, J. Appl. Polym. Sci., Doi:10.1002/app.43261. https://doi.org/10.1002/app.43261
- J. H. Lee, J. H. Lee, D. K. Kim, C. H. Park, J. H. Yu, and E. Y. Lee, Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane, J. Ind. Eng. Chem., 34, 157-164 (2016). https://doi.org/10.1016/j.jiec.2015.11.007
- J. C. Dominguez, M. Oliet, M. V. Alonso, E. Rojo, and F. Rodriguez, Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin, Ind. Crop. Prod., 42, 308-314 (2013). https://doi.org/10.1016/j.indcrop.2012.06.004
- J. M. Perez, M. Oliet, M. V. Alonso, and F. Rodriguez, Cure kinetics of lignin-novolac resins studied by isoconversional methods, Thermochim. Acta, 487, 39-42 (2009). https://doi.org/10.1016/j.tca.2009.01.005
- S. Cheng, Z. Yuan, M. Leitch, M. Anderson, and C. C. Xu, Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio, Ind. Crop. Prod., 44, 315-322 (2013). https://doi.org/10.1016/j.indcrop.2012.10.033
- N. S. Cetin and N. Ozmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins, Int. J. Adhes. Adhes., 22, 477-480 (2002). https://doi.org/10.1016/S0143-7496(02)00058-1
- M. V. Alonso, M. Oliet, J. M. Perez, F. Rodriguez, and J. Echeverria, Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods, Thermochim. Acta, 419, 161-167 (2004). https://doi.org/10.1016/j.tca.2004.02.004
- C. C. Lin and H. Teng, Influence of the formaldehyde-to-phenol ratio in resin synthesis on the production of activated carbons from phenol-formaldehyde resins, Ind. Eng. Chem. Res., 41, 1986-1992 (2002). https://doi.org/10.1021/ie010610n
- P. K. Pal, A. Kumar, and S. K. Gupta, Modelling of resole type phenol formaldehyde polymerization, Polymer, 22, 1699-1704 (1981). https://doi.org/10.1016/0032-3861(81)90389-X
- W. J. Lee, K. C. Chang, and I. M. Tseng, Properties of phenol formaldehyde resins prepared from phenol-liquefied lignin, J. Appl. Polym. Sci., 124, 4782-4788 (2012).
- W. Zhang, Y. Ma, Y. Xu, C. Wang, and F. Chu, Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive, Int. J. Adhes. Adhes., 40, 11-18 (2013). https://doi.org/10.1016/j.ijadhadh.2012.08.004
- W. J. Lee and Y. C. Chen, Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings, Bioresour. Technol., 99, 7247-7254 (2008). https://doi.org/10.1016/j.biortech.2007.12.060
- J. M. Raquez, M. Deleglise, M. F. Lacrampe, and P. Krawczak, Thermosetting (bio) materials derived from renewable resources: a critical review, Prog. Polym. Sci., 35, 487-509 (2010). https://doi.org/10.1016/j.progpolymsci.2010.01.001
- B. J. Anderson, Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements, Polym. Degrad. Stabil., 96, 1874-1881 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.07.010
- M. R. Bagherzadeh, A. Daneshvar, and H. Shariatpanahi, Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel, Surf. Coat. Technol., 206, 2057-2063 (2012). https://doi.org/10.1016/j.surfcoat.2011.05.036
- T. I. Yang, C. W. Peng, Y. L. Lin, C. J. Weng, G. Edgington, A. Mylonakis, T. C. Huang, C. H. Hsu, J. M. Yeh, and Y. Wei, Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multiscale structures mimicking the surface of Xanthosomasagittifolium leaf, J. Mater. Chem., 22, 15845-15852 (2012). https://doi.org/10.1039/c2jm32365f
- K. Li, K. Wang, M. S. Zhan, and W. Xu, The change of thermal-mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging, Polym. Degrad. Stabil., 98, 2340-2346 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.08.014
- R. F. Fischer, Polyesters from epoxides and anhydrides, J. Polym. Sci., 44, 155-172 (1960). https://doi.org/10.1002/pol.1960.1204414314
- L. H. Sinh, N. N. Trung, B. T. Son, S. Shin, D. T. Thanh, and J. Y. Bae, Curing behavior, thermal, and mechanical properties of epoxy resins cured with a novel liquid crystalline dicarboxylic acid curing agent, Polym. Eng. Sci., 54, 695-703 (2014). https://doi.org/10.1002/pen.23585
- E. C. Dodds and W. Lawson, Synthetic estrogenic agents without the phenanthrene nucleus, Nature, 137, 996-996 (1936).
- K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. VomSaal, Environmental toxins: exposure to bisphenolA advances puberty, Nature, 401, 763-764 (1999). https://doi.org/10.1038/44517
- A. Campanella, M. A. Baltanas, M. C. Capel-Sanchez, J. M. Campos-Martin, and J. L. G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO 2 catalyst, Green Chem., 6, 330-334 (2004). https://doi.org/10.1039/B404975F
- T. Koike, Progress in development of epoxy resin systems based on wood biomass in Japan, Polym. Eng. Sci., 52, 701-717 (2012). https://doi.org/10.1002/pen.23119
- N. E. El Mansouri, Q. Yuan, and F. Huang, Synthesis and characterization of kraft lignin-based epoxy resins, Bioresources, 6, 2492-2503 (2011).
- T. Malutan, R. Nicu, and V. I. Popa, Lignin modification by epoxidation, Bioresources, 3, 1371-1376 (2008).
- P. Y. Kuo, M. Sain, and N. Yan, Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark, Green Chem., 16, 3483-3493 (2014). https://doi.org/10.1039/c4gc00459k
- H. Pan, G. Sun, and T. Zhao, Synthesis and characterization of aminated lignin, Int. J. Biol. Macromol., 59, 221-226 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.049
- C. Sasaki, M. Wanaka, H. Takagi, S. Tamura, C. Asada, and Y. Nakamura, Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin, Ind. Crop. Prod., 43, 757-761 (2013). https://doi.org/10.1016/j.indcrop.2012.08.018
- F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology, RSC Adv., 4, 31745-31753 (2014). https://doi.org/10.1039/C4RA03978E
- F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: Curing kinetics and thermal properties, Thermochim. Acta, 618, 48-55 (2015). https://doi.org/10.1016/j.tca.2015.09.012
- J. Qin, M. Woloctt, and J. Zhang, Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application, ACS Sustain. Chem. Eng., 2, 188-193 (2013).
- T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). https://doi.org/10.1039/c2gc35933b
- A. L. Korich, K. M. Clarke, D. Wallace, and P. M. Iovine, Chemical modification of a lignin model polymer via arylboronate ester formation under mild reaction conditions, Macromolecules, 42, 5906-5908 (2009). https://doi.org/10.1021/ma901146b
- J. H. Lora and W. G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials, J. Polym. Environ., 10, 39-48 (2002). https://doi.org/10.1023/A:1021070006895
- M. Evtiouguina, A. Barros-Timmons, J. J. Cruz-Pinto, C. P. Neto, M. N. Belgacem, and A. Gandini, Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations, Biomacromolecules, 3, 57-62 (2002). https://doi.org/10.1021/bm010100c
- B. Ahvazi, O. Wojciechowicz, T. M. Ton-That, and J. Hawari, Preparation of lignopolyols from wheat straw soda lignin, J. Agric. Food Chem., 59, 10505-10516 (2011). https://doi.org/10.1021/jf202452m
- C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams, Ind. Eng. Chem. Res., 48, 2583-2589 (2009). https://doi.org/10.1021/ie801251r
- H. Nadji, C. Bruzzese, M. N. Belgacem, A. Benaboura, and A. Gandini, Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols, Macromol. Mater. Eng., 290, 1009-1016 (2005). https://doi.org/10.1002/mame.200500200
- H. Sadeghifar, C. Cui, and D. S. Argyropoulos, Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraftlignins via methylation and oxypropylation chemistries, Ind. Eng. Chem. Res., 51, 16713-16720 (2012). https://doi.org/10.1021/ie301848j
- M. Yoshioka, Y. Nishio, D. Saito, H. Ohashi, M. Hashimoto, and N. Shiraishi, Synthesis of biopolyols by mild oxypropylation of liquefied starch and its application to polyurethane rigid foams, J. Appl. Polym. Sci., 130, 622-630 (2013). https://doi.org/10.1002/app.39167
- M. V. Alonso, M. Oliet, F. Rodriguez, J. Garcia, M. A. Gilarranz, and J. J. Rodriguez, Modification of ammonium lignosulfonate by phenolation for use in phenolic resins, Bioresour. Technol., 96, 1013-1018 (2005). https://doi.org/10.1016/j.biortech.2004.09.009
- L. Hu, H. Pan, Y. Zhou, and M. Zhang, Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review, BioResources, 6, 3515-3525 (2011).
- J. Podschun, B. Saake, and R. Lehnen, Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets, Eur. Polym. J., 67, 1-11 (2015).
- R. Fang, X. Cheng, and W. S. Lin, Preparation and application of dimer acid/lignin graft copolymer, BioResources, 6, 2874-2884 (2011).
- J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song and Y. Liu, Recent advances in polyolefin technology, Polym. Chem., 2, 1611-1623 (2011). https://doi.org/10.1039/c0py00352b
- H. Chung and N. R. Washburn, Chemistry of lignin-based materials, Green Mat., 1, 137-160 (2012).
- M. Mikulasova, B. Kosikova, P. Alexy, F. Kacik, and E. Urgelova, Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics, World J. Microbiol. Biotechnol., 17, 601-607 (2001). https://doi.org/10.1023/A:1012415023385
- G. Cazacu, M. C. Pascu, L. Profire, A. I. Kowarski, M. Mihaes, and C. Vasile, Lignin role in a complex polyolefin blend, Ind. Crop. Prod., 20, 261-273 (2004). https://doi.org/10.1016/j.indcrop.2004.04.030
- M. Nahmany and A. Melman, Chemoselectivity in reactions of esterification, Org. Biomol. Chem., 2, 1563-1572 (2004). https://doi.org/10.1039/b403161j
- G. Sivasankarapillai, A. G. McDonald, and H. Li, Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranchedprepolymers for cross-linking, Biomass Bioenerg., 47, 99-108 (2012). https://doi.org/10.1016/j.biombioe.2012.09.057
- T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). https://doi.org/10.1039/c2gc35933b
- Z. X. Guo and A. Gandini, Polyesters from lignin-2. The copolyesterification of kraft lignin and polyethylene glycols with dicarboxylic acid chlorides, Eur. Polym. J., 27, 1177-1180 (1991). https://doi.org/10.1016/0014-3057(91)90053-Q
- N. T. ThanhBinh, N. D. Luong, D. O. Kim, S. H. Lee, B. J. Kim, Y. S. Lee, and J. D. Nam, Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer, Compos. Interfaces, 16, 923-935 (2009). https://doi.org/10.1163/092764409X12477479344485
- E. Frank, L. M. Steudle, D. Ingildeev, J. M. Sporl, and M. R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed., 53, 5262-5298 (2014). https://doi.org/10.1002/anie.201306129
- I. Norberg, Y. Nordstrom, R. Drougge, G. Gellerstedt, and E. Sjoholm, A new method for stabilizing softwood kraft lignin fibers for carbon fiber production, J. Appl. Polym. Sci., 128, 3824-3830 (2013). https://doi.org/10.1002/app.38588
- J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Lignin-based carbon fibers for composite fiber applications, Carbon, 40, 2913-2920 (2002). https://doi.org/10.1016/S0008-6223(02)00248-8
- D. A. Baker and T. G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin, J. Appl. Polym. Sci., 130, 713-728 (2013). https://doi.org/10.1002/app.39273
- G. Gellerstedt, E. Sjoholm, and I. Brodin, The wood-based biorefinery: A source of carbon fiber?, Open Agric. J., 4, 119-124 (2010). https://doi.org/10.2174/1874331501004010119