Melanin: A Naturally Existing Multifunctional Material

자연계에 존재하는 다기능성 소재 : 멜라닌

  • Eom, Taesik (Department of Chemical Engineering, Inha University) ;
  • Woo, Kyungbae (Department of Chemical Engineering, Inha University) ;
  • Shim, Bong Sup (Department of Chemical Engineering, Inha University)
  • 엄태식 (인하대학교 화학공학과) ;
  • 우경배 (인하대학교 화학공학과) ;
  • 심봉섭 (인하대학교 화학공학과)
  • Received : 2016.03.22
  • Accepted : 2016.03.28
  • Published : 2016.04.10


Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structures in nature are not still well defined, their multifunctional properties including electrical and ionic conductivities, antioxidation, wet adhesion, and metal ion chelation, are highlighted for the potential applications in bioorganic electronics including biomedical sensors and devices. In this mini-review, we will discuss sources, synthesis methods, structures and multifunctional properties of melanin materials in addition to current research directions on a wide range of applications.


Supported by : National Research Foundation of Korea


  1. P. A. Riley, Melanin, Int. J. Biochem. Cell Biol., 29(11), 1235-1239 (1997).
  2. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.-C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J. D. Simon, and S. Ito, Melanins and melanogenesis: Methods, standards, protocols, Pigment Cell Melanoma Res., 26(5), 616-633 (2013).
  3. F. Solano, Melanins: Skin pigments and much more-types, structural models, biological functions, and formation routes, New J. Sci., 2014, 1-28 (2014).
  4. V. P. Grishchuk, S. A. Davidenko, I. D. Zholner, A. B. Verbitskii, M. V. Kurik, and Y. P. Piryatinskii, Optical absorption and luminescent properties of melanin films, Tech. Phys. Lett., 28(11), 896-898 (2002).
  5. V. Capozzi, G. Perna, P. Carmone, A. Gallone, M. Lastella, E. Mezzenga, G. Quartucci, M. Ambrico, V. Augelli, P. F. Biagi, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, and R. Cicero, Optical and photoelectronic properties of melanin, Thin Solid Films, 511, 362-366 (2006).
  6. M. R. Powell and B. Rosenberg, The nature of the charge carriers in solvated biomacromolecules: DNA and water, Biopolymers, 9(11), 1403-1406 (1970).
  7. J. E. McGinness, Mobility gaps: A mechanism for band gaps in melanins, Science, 177(4052), 896-897 (1972).
  8. J. McGinness, P. Corry, and P. Proctor, Amorphous semiconductor switching in melanins, Science, 183(4127), 853-855 (1974).
  9. P. B. Capelletti, P. R. Crippa, and N. Romeo, Electrical characteristics and electret behavior of melanin, ECS J. Solid State Sci. Technol., 126(7), 1207-1212 (1979).
  10. W. Osak, K. Tkacz, H. Czternastek, and J. Slawinski, I - V Characteristics and electrical conductivity of synthetic melanin, Biopolymers, 28(11), 1885-1890 (1989).
  11. T. Ligonzo, M. Ambrico, V. Augelli, G. Perna, L. Schiavulli, M. A. Tamma, P. F. Biagi, A. Minafra, and V. Capozzi, Electrical and optical properties of natural and synthetic melanin biopolymer, J. Non-Cryst. Solids, 355(22-23), 1221-1226 (2009).
  12. C. J. Bettinger, P. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering, Biomaterials, 30(17), 3050-3057 (2009).
  13. M. Rozanowska, T. Sarna, E. J. Land, and T. G. Truscott, Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals, Free Radic. Biol. Med., 26(5-6), 518-525 (1999).
  14. C. C. Felix, J. S. Hyde, T. Sarna, and R. C. Sealy, Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals, J. Am. Chem. Soc., 100(12), 3922-3926 (1978).
  15. M. d'Ischia, A. Napolitano, A. Pezzella, P. Meredith, and T. Sarna, Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed., 48(22), 3914-3921 (2009).
  16. Y. Liu and J. D. Simon, The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis, Pigment Cell Res., 16(1), 72-80 (2003).
  17. M. d'Ischia, A. Napolitano, V. Ball, C.-T. Chen, and M. J. Buehler, Polydopamine and eumelanin: From etructure-property relationships to a unified tailoring strategy, Acc. Chem. Res., 47(12), 3541-3550 (2014).
  18. J. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, and P. Meredith, Device-quality electrically conducting melanin thin films, Adv. Mater., 20(18), 3539-3542 (2008).
  19. M. I. N. da Silva, S. N. Deziderio, J. C. Gonzalez, C. F. O. Graeff, and M. A. Cotta, Synthetic melanin thin films: Structural and electrical properties, J. Appl. Phys., 96(10), 5803-5807 (2004).
  20. Y. Liu, K. Ai, and L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114(9), 5057-5115 (2014).
  21. I. G. Kim, H. J. Nam, H. J. Ahn, and D.-Y. Jung, Electrochemical growth of synthetic melanin thin films by constant potential methods, Electrochim. Acta, 56(7), 2954-2959 (2011).
  22. K. Kang, S. Lee, R. Kim, I. S. Choi, and Y. Nam, Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces, Angew. Chem. Int. Ed., 51(52), 13101-13104 (2012).
  23. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices, Proc. Natl. Acad. Sci. USA, 110(52), 20912-20917 (2013).
  24. M. L. Wolbarsht, A. W. Walsh, and G. George, Melanin, a unique biological absorber, Appl. Opt., 20(13), 2184-2186 (1981).
  25. M. A. Rosei, L. Mosca, and F. Galluzzi, Photoelectronic properties of synthetic melanins, Synth. Met., 76(1-3), 331-335 (1996).
  26. A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc. Natl. Acad. Sci. USA, 109(23), 8943-8947 (2012).
  27. C.-T. Chen, V. Ball, J. J. de Almeida Gracio, M. K. Singh, V. Toniazzo, D. Ruch, and M. J. Buehler, Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design, ACS Nano, 7(2), 1524-1532 (2013).
  28. J. Wuensche, F. Cicoira, C. F. O. Graeff, and C. Santato, Eumelanin thin films: Solution-processing, growth, and charge transport properties, J. Mater. Chem. B, 1(31), 3836-3842 (2013).
  29. D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering, J. Mater. Chem. B, 1(17), 2305-2314 (2013).
  30. V. Gargiulo, M. Alfe, R. Di Capua, A. R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, and A. Pezzella, Supplementing pi-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface, J. Mater. Chem. B, 3(25), 5070-5079 (2015).
  31. J. Borovansky, M. Elleder, Melanosome degradation: Fact or fiction, Pigment Cell Res., 16(3), 280-286 (2003).
  32. D. J. Kim, K. Y. Ju, and J. K. Lee, The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions, Bull. Korean Chem. Soc., 33(11), 3788-3792 (2012).
  33. D. Wang, C. Chen, X. Ke, N. Kang, Y. Shen, Y. Liu, X. Zhou, H. Wang, C. Chen, and L. Ren, Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system, ACS Appl. Mater. Interfaces, 7(5), 3030-3040 (2015).
  34. K. Shanmuganathan, J. H. Cho, P. Iyer, S. Baranowitz, and C. J. Ellison, Thermooxidative stabilization of polymers using natural and synthetic melanins, Macromolecules, 44(24), 9499-9507 (2011).
  35. M. Araujo, R. Viveiros, T. R. Correia, I. J. Correia, V. D. B. Bonifacio, T. Casimiro, and A. Aguiar-Ricardo, Natural melanin: A potential pH-responsive drug release device, Int. J. Pharm., 469(1), 140-145 (2014).
  36. M. P. da Silva, J. C. Fernandes, N. B. de Figueiredo, M. Congiu, M. Mulato, and C. F. de Oliveira Graeff, Melanin as an active layer in biosensors, AIP Adv., 4(3), 037120-1-8 (2014).
  37. F. Bernsmann, B. Frisch, C. Ringwald, and V. Ball, Protein adsorption on dopamine-melanin films: Role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption, J. Colloid Interface Sci., 344(1), 54-60 (2010).
  38. T.-F. Wu and J.-D. Hong, Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor, Sens. Actuators B Chem., 224, 178-184 (2016).
  39. M. D. Rubianes, A. Sanchez Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, and G. Rivas, Carbon nanotubes paste electrodes modified with a melanic polymer: Analytical applications for the sensitive and selective quantification of dopamine, Sens. Actuators B Chem., 144(1), 274-279 (2010).
  40. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells, Adv. Mater., 26(38), 6572-6579 (2014).
  41. W. Dong, Y. Wang, C. Huang, S. Xiang, P. Ma, Z. Ni, and M. Chen, Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin, J. Therm. Anal. Calorim., 115(2), 1661-1668 (2014).
  42. M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, and A. Dhinojwala, Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles, ACS Nano, 9(5), 5454-5460 (2015).
  43. T.-F. Wu and J.-D. Hong, Dopamine-melanin nanofilms for biomimetic structural coloration, Biomacromolecules, 16(2), 660-666 (2015).