Buffer-Optimized High Gradient Magnetic Separation: Target Cell Capture Efficiency is Predicted by Linear Bead-Capture Theory

  • Waseem, Shahid (Department of Pathobiology, Faculty of Science, Mahidol University) ;
  • Udomsangpetch, Rachanee (Department of Pathobiology, Faculty of Science, Mahidol University) ;
  • Bhakdi, Sebastian C. (Department of Pathobiology, Faculty of Science, Mahidol University)
  • Received : 2015.10.01
  • Accepted : 2015.12.22
  • Published : 2016.03.31


High gradient magnetic separation (HGMS) is the most commonly used magnetic cell separation technique in biomedical science. However, parameters determining target cell capture efficiencies in HGMS are still not well understood. This limitation leads to loss of information and resources. The present study develops a bead-capture theory to predict capture efficiencies in HGMS. The theory is tested with CD3- and CD14-positive cells in combination with paramagnetic beads of different sizes and a generic immunomagnetic separation system. Data depict a linear relationship between normalized capture efficiency and the bead concentration. In addition, it is shown that key biological functions of target cells are not affected for all bead sizes and concentrations used. In summary, linear bead-capture theory predicts capture efficiency ($E_t$) in a highly significant manner.



  1. A. Oren, C. Husebo, A.-C. Iversen, and R. Austgulen, J. Immunol. Meth. 303, 1 (2005).
  2. J. Oberteuffer, IEEE Trans. Magn. 9, 303 (1973).
  3. F. Paul, S. Roath, and D. Melville, Br. J. Haematol. 38, 273 (1978).
  4. F. Paul, S. Roath, D. Melville, D. Warhurst, and J. Osisanya, The Lancet 318, 70 (1981).
  5. S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, Cytometry 11, 231 (1990).
  6. A. Grutzkau and A. Radbruch, Cytometry Part A 77, 643 (2010).
  7. D. Pappas, Front Matter: Wiley Online Library (2010).
  8. S. Bhakdi, A. Ottinger, S. Somsri, P. Sratongno, P. Pannadaporn, P. Chimma, P. Malasit, K. Pattanapanyasat, and H. P. N. Neumann, Malaria J. 9, 38 (2010).
  9. T. Baier, S. Mohanty, K. Drese, F. Rampf, J. Kim, F. Schonfeld, Microfluid Nanofluid 7, 205 (2009).
  10. R. Gerber and P. Lawson, IEEE Trans. Magn. 25, 806 (1989).
  11. S. Y. Wang, K. L. Mak, L. Y. Chen, M. P. Chou, and C. K. Ho, Immunology 77, 298 (1992).
  12. W. Trager and J. B. Jensen, Science 193, 673 (1976).
  13. C. Lambros and J. Vanderberg, J. Parasitol. 65, 418 (1979).
  14. M. R. Potter and M. Moore, Clin. Exp. Immunol. 21, 456 (1975).
  15. A. Scholzen, D. Mittag, S. J. Rogerson, B. M. Cooke, and M. Plebanski, PLoS Pathog. 5, 14 (2009).
  16. S. Yilmaz, F. Unal, and D. Yuzbasioglu, Cytotech. 30, 30 (2009).
  17. L. Ginaldi, E. Matutes, N. Farahat, M. De Martinis, R. Morilla, and D. Morilla, Br. J. Haematol. 93, 921 (1996).
  18. H. W. Ziegler-Heitbrock, M. Strobel, D. Kieper, G. Fingerle, T. Schlunck, I. Petersmann, J. Ellwart, M. Blumenstein, and J. G. Haas, Blood. 79, 503 (1992).
  19. B. Passlick, D. Flieger, and H. W. Ziegler-Heitbrock, Blood 74, 2527 (1989).
  20. W. Leung and C. Civin, Clinical bone marrow and blood stem cell transplantation Cambridge University Press, Cambridge (2000).
  21. P. Lang, M. Schumm, G. Taylor, T. Klingebiel, S. Neu, A. Geiselhart, S. Kuci, D. Niethammer, and R. Handgretinger, Bone Marrow Trans. 24, 583 (1999).
  22. T. Lea, E. Smeland, S. Funderud, F. Vartdal, C. Davies, K. Beiske, and J. Ugelstad, Scand. J. Immunol. 23, 09 (1986).
  23. A. Winkelstein, P. L. Simon, P. A. Myers, and L. D. Weaver, Exp. Hematol. 14, 1023 (1986).
  24. E. Bettiol, D. L. Van de Hoef, D. Carapau, and A. Rodriguez, Parasite Immunol. 32, 389 (2010).
  25. P. M. Henson, J. Exp. Med. 134, 114 (1971).
  26. R. Takemura, P. E. Stenberg, D. F. Bainton, and Z. Werb, J. Cell Biol. 102, 55 (1986).