DOI QR코드

DOI QR Code

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University) ;
  • Yun, Ji-Hye (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University) ;
  • Kim, Woo Taek (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Tae-Yoon (Department of Dermatology and Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Lee, Weontae (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University)
  • Received : 2015.10.08
  • Accepted : 2015.12.04
  • Published : 2016.03.31

Abstract

A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. Antonyuk, S.V., Strange, R.W., Marklund, S.L., and Hasnain, S.S. (2009). The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J. Mol. Biol. 388, 310-326. https://doi.org/10.1016/j.jmb.2009.03.026
  2. Arnelle, D.R., Day, B.J., and Stamler, J.S. (1997). Diethyl dithiocarbamate- induced decomposition of S-nitrosothiols. Nitric Oxide. 1, 56-64. https://doi.org/10.1006/niox.1996.0107
  3. Bae, J.Y., Koo, B.K., Ryu, H.B., Song, J.A., Nguyen, M.T., Vu, T.T., Son, Y.J., Lee, H.K., and Choe, H. (2013). Cu/Zn incorporation during purification of soluble human EC-SOD from E. coli stabilizes proper disulfide bond formation. Appl. Biochem. Biotechnol. 169, 1633-1647. https://doi.org/10.1007/s12010-012-0025-x
  4. Beyer, W., Imlay, J., and Fridovich, I. (1991). Superoxide dismutases. Prog. Nucl. Acid Res. Mol. Biol. 40, 221-253. https://doi.org/10.1016/S0079-6603(08)60843-0
  5. Bowler, R.P., Nicks, M., Warnick, K., and Crapo, J.D. (2002). Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L719-726. https://doi.org/10.1152/ajplung.00058.2001
  6. Bowler, R.P., Nicks, M., Tran, K., Tanner, G., Chang, L.Y., Young, S.K., and Worthen, G.S. (2004). Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am. J. Respir. Cell. Mol. Biol. 31, 432-439. https://doi.org/10.1165/rcmb.2004-0057OC
  7. Byun, S.J., Ji, M.R., Jang, Y.J., Hwang, A.I., Chung, H.K., Kim, J.S., Kim, K.W., Yoo, J.G., and Kim, T.Y. (2013). Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken. BMB Rep. 46, 404-409. https://doi.org/10.5483/BMBRep.2013.46.8.251
  8. Carlsson, L.M., Jonsson, J., Edlund, T., and Marklund, S.L. (1995). Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA 92, 6264-6268. https://doi.org/10.1073/pnas.92.14.6264
  9. Chen, H.L., Yen, C.C., Tsai, T.C., Yu, C.H., Liou, Y.J., and Lai, Y.W. (2006). Production and characterization of human extracellular superoxide dismutase in the methylotrophic yeast Pichia pastoris. J. Agric. Food Chem. 54, 8041-8047. https://doi.org/10.1021/jf061379x
  10. Chen, C.M., Lai, Z.L., Yen, C.C., Wang, M.L., and Chen, H.L. (2013). Cloning and expression of the human extracellular superoxide dismutase (EC-SOD) gene in probiotic lactobacillus casei. Int. J. Biosci. Biochem. Bioinforma 3, 557-561.
  11. Demchenko, I.T., Oury, T.D., Crapo, J.D., and Piantadosi, C.A. (2002). Regulation of the brain's vascular responses to oxygen. Circ. Res. 91, 1031-1037. https://doi.org/10.1161/01.RES.0000043500.03647.81
  12. Didion, S.P., Hathaway, C.A., and Faraci, F.M. (2001). Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am. J. Physiol. Heart Circ. Physiol. 281, H1697-H1703. https://doi.org/10.1152/ajpheart.2001.281.4.H1697
  13. Due, A.V., Petersen, S.V., Valnickova, Z., Ostergaard, L., Oury, T.D., and Crapo, J.D. (2006). Extracellular superoxide dismutase exists as an octamer. FEBS Lett. 580, 1485-1489. https://doi.org/10.1016/j.febslet.2006.01.081
  14. Edlund, A., Edlund, T., Hjalmarsson, K., Marklund, S.L., Sandstrom, J., Stromqvist, M., and Tibell, L. (1992). A non-glycosylated extracellular superoxide dismutase variant. Biochem. J. 288, 451-456. https://doi.org/10.1042/bj2880451
  15. Folz, R.J., Abushamaa, A.M., and Suliman, H.B. (1999). Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J. Clin. Invest. 103, 1055-1066. https://doi.org/10.1172/JCI3816
  16. He, H.J., Yuan, Q.S., Yang, G. Z., and Wu, X.F. (2002). High-level expression of human extracellular superoxide dismutase in Escherichia coli and insect cells. Protein Expr. Purif. 24, 13-17. https://doi.org/10.1006/prep.2001.1529
  17. Iqbal, J., and Whitney, P. (1991). Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic. Biol. Med. 10, 69-77. https://doi.org/10.1016/0891-5849(91)90023-V
  18. Li, J., Li, P.F., Dietz, R., and von Harsdorf, R. (2002). Intracellular superoxide induces apoptosis in VSMCs: role of mitochondrial membrane potential, cytochrome C and caspases. Apoptosis 7, 511-517. https://doi.org/10.1023/A:1020639025669
  19. Liu, T., Qian, W.J., Gritsenko, M.A., Camp 2nd, D.G., Monroe, M.E., Moore R.J., and Smith, R.D. (2005). Human plasma Nglycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res. 4, 2070-2080. https://doi.org/10.1021/pr0502065
  20. Mamo, L.B., Suliman, H.B., Giles, B.L., Auten, R.L., Piantadosi, C.A., and Nozik-Grayck, E. (2004). Discordant extracellular superoxide dismutase expression and activity in neonatal hyperoxic lung. Am. J. Respir. Crit. Care Med. 170, 313-318. https://doi.org/10.1164/rccm.200309-1282OC
  21. Nozik-Grayck, E., Suliman, H.B., and Piantadosi, C.A. (2005). Extracellular superoxide dismutase. Int. J. Biochem. Cell Biol. 37, 2466-2471. https://doi.org/10.1016/j.biocel.2005.06.012
  22. Ohta, H., Adachi, T., and Hirano, K. (1994). Internalization of human extracellular- superoxide dismutase by bovine aortic endothelial cells. Free Rad. Biol. Med. 16, 501-507. https://doi.org/10.1016/0891-5849(94)90128-7
  23. Oury, T.D., Day, B.J., and Crapo, J.D. (1996a). Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab. Invest. 75, 617- 636.
  24. Oury, T.D., Day, B.J., and Crapo, J.D. (1996b). Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic. Biol. Med. 20, 957-965. https://doi.org/10.1016/0891-5849(95)02222-8
  25. Oury, T.D., Schaefer, L.M., Fattman, C.L., Choi, A., Weck, K.E., and Watkins, S.C. (2002). Depletion of pulmonary EC-SOD after exposure to hyperoxia. Am J. Physiol. Lung Cell Mol. Physiol. 283, L777-784. https://doi.org/10.1152/ajplung.00011.2002
  26. Petersen, S.V., Olsen, D.A., Kenney, J.M., Oury, T.D., Valnickova, Z., Thogersen, I.B., Crapo, and J.D., Enghild, J.J. (2005). The high concentration of $Arg^{213}{\rightarrow}Gly$ extracellular superoxide dismutase (EC-SOD) in plasma is caused by a reduction of both heparin and collagen affinities. Biochem. J. 385, 427-432. https://doi.org/10.1042/BJ20041218
  27. Ryu, K., Kim, Y.H., Lee, J.S., Jeon, B., Kim, and T.Y. (2008). Increased yield of high-purity and active tetrameric recombinant human EC-SOD by solid phase refolding. J. Microbiol. Biotechnol. 18, 1648-1654.
  28. Suliman, H.B., Ali, M., and Piantadosi, C.A. (2004). Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 104, 43-50. https://doi.org/10.1182/blood-2003-07-2240
  29. Tan, A.S., and Berridge, M.V. (2000). Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening antiinflammatory agents. J. Immunol. Methods 238, 59-68. https://doi.org/10.1016/S0022-1759(00)00156-3
  30. Tan, R.J., Fattman, C.L., Watkins, S.C., and Oury, T.D (2004). Redistribution of pulmonary EC-SOD after exposure to asbestos. J. Appl. Physiol. 97, 2006-2013. https://doi.org/10.1152/japplphysiol.00480.2004
  31. Tibell, L., Hjalmarsson, K., Edlund, T., Skogman, G., Engstrom, V., and Marklund, S.L. (1987). Expression of human extracellular superoxide dismutase in Chinese hamster ovary cells and characterization of the product. Proc. Natl. Acad. Sci. USA 84, 6634-6638. https://doi.org/10.1073/pnas.84.19.6634
  32. Yun, J.H., Kim, K., Jung, Y., Park, J.H., Cho H.S., and Lee, W. (2015). Co-expression of human agouti-related protein enhances expression and stability of human melanocortin-4 receptor. Biochem. Biophys. Res. Commun. 456, 116-121. https://doi.org/10.1016/j.bbrc.2014.11.044
  33. Zelko, I.N., Mariani, T.J., and Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical. Biol. Med. 33, 337-349. https://doi.org/10.1016/S0891-5849(02)00905-X

Cited by

  1. Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk vol.27, pp.4, 2018, https://doi.org/10.1007/s11248-018-0080-3