DOI QR코드

DOI QR Code

Scabraside D Extracted from Holothuria scabra Induces Apoptosis and Inhibits Growth of Human Cholangiocarcinoma Xenografts in Mice

  • Assawasuparerk, Kanjana (Department of Anatomy, Prince of Songkhla University Surat Thani Campus) ;
  • Vanichviriyakit, Rapeepun (Department of Anatomy, Prince of Songkhla University Surat Thani Campus) ;
  • Chotwiwatthanakun, Charoonroj (Nakhonsawan Campus, Mahidol University) ;
  • Nobsathian, Saksit (Nakhonsawan Campus, Mahidol University) ;
  • Rawangchue, Thanakorn (Center for Veterinary Diagnosis, Faculty of Veterinary Science) ;
  • Wittayachumnankul, Boonsirm (Department of Anatomy, Prince of Songkhla University Surat Thani Campus)
  • Published : 2016.03.07

Abstract

Scabraside D, a sulfated triterpene glycoside extract from sea cucumber Holothulia scabra, shows various biological activities, but effects on human cholangiocarcinoma cells have not previously been reported. In the present study, we investigated the activity of scabraside D against human cholangiocarcinoma (HuCCA) both in vitro and for tumor growth inhibition in vivo using a xenograft model in nude mice. Scabraside D ($12.5-100{\mu}g/mL$) significantly decreased the viability and the migration of the HuCCA cells in a dose-dependent manner, with 50% inhibitory concentration (IC50) of $12.8{\pm}0.05{\mu}g/mL$ at 24 h. It induced signs of apoptotic cells, including shrinkage, pyknosis and karyorrhetic nuclei and DNA fragmentation on agarose gel electrophoresis. Moreover, by quantitative real-time PCR, scabraside D effectively decreased Bcl-2 while increasing Bax and Caspase-3 gene expression levels suggesting that the scabraside D could induce apoptosis in HuCCA cells. In vivo study demonstrated that scabraside D (1 mg/kg/day, i.p. for 21 days) significantly reduced growth of the HuCCA xenografts without adverse effects on the nude mice. Conclusively, scabraside D induced apoptosis in HuCCA cells and reduced the growth of HuCCA xenographs model. Therefore, scabraside D may have potential as a new therapeutic agent for cholangiocarcinoma.

Keywords

Scabraside D;Holothuria scabra;cholangiocarcinoma;apoptosis;sea cucumber extract

References

  1. Adrain TE (2007). Novel marine-derived anti-cancer agents. Curr Pharm Des, 13, 3417-26. https://doi.org/10.2174/138161207782360500
  2. Bahrami Y, Zhang W, Chataway T, et al (2014). Structural elucidation of novel saponins in the sea cucumber Holothuria lessoni. Mar Drugs, 12, 4439-73. https://doi.org/10.3390/md12084439
  3. Bhattarai G, Lee YH, Lee IK, et al (2012). Fomitoside-K from Fomitopsis nigra induces apoptosis of human oral squamous cell carcinomas (YD-10B) via mitochondrial signaling. Biol Pharma Bull, 35, 1711-19. https://doi.org/10.1248/bpb.b12-00297
  4. Bras M, Queenan B, Susin SA (2005). Programmed cell death via mitochondria: different modes of dying. Biochem (Mosc), 70, 231-39. https://doi.org/10.1007/s10541-005-0105-4
  5. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in Neurodegenerative diseases: experimental and therapeutic approaches. Method Find Exp Clin Pharmacol, 30, 43-65. https://doi.org/10.1358/mf.2008.30.1.1090962
  6. Caulier G, Dyck SV, Gerbaux P, et al (2011). Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-de-mer Inf Bull, 31, 48-54.
  7. Chen X, Li Y, Lin Q, et al (2014). Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Sci Rep, 4, 1-5.
  8. Chludil HD, Muniain CC, Seldes AM, et al (2002). Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J Nat Prod, 65, 860-65. https://doi.org/10.1021/np0106236
  9. Green DR, Reed JC (1998). Mitochondria and apoptosis. Science, 281, 1309-12. https://doi.org/10.1126/science.281.5381.1309
  10. Han H, Li L, Yi YH, et al (2012). Triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity. Chin Herb Med, 4, 183-88.
  11. Haswell-Elkins MR, Mairiang E, Mairiang P, et al (1994). Cross-sectional study of opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. Int J Cancer, 59, 505-9. https://doi.org/10.1002/ijc.2910590412
  12. Hejna M, Pruckmayer M, Raderer M (1998). The role of chemotherapy and radiation in the management of biliary cancer: a review of the literature. Eur J Cancer, 34, 977-86. https://doi.org/10.1016/S0959-8049(97)10166-6
  13. Kerr RG, Chen Z (1995). In vivo and in vitro biosynthesis of saponins in sea cucumbers. J Nat Prod, 58, 172-76. https://doi.org/10.1021/np50116a002
  14. Kitagawa I, Kobayashi M, Hori M, et al (1989). Marine natural products. XVIII. Four lanostane-type triterpene oligoglycosides, bivittosides A, B, C, and D, from the Okinawan sea cucumber Bohadschia bivittata Mitsukuri. Chem Pharma Bull, 37, 61-7. https://doi.org/10.1248/cpb.37.61
  15. Li X, Roginsky AB, Ding XZ, et al (2008). Review of the apoptosis pathways in pancreatic cancer and the antiapoptotic effect of the novel sea cucumber compound, Frondoside A. Ann N Y Acad Sci, 1138, 181-98. https://doi.org/10.1196/annals.1414.025
  16. Liang CC, Park AY, Guan JL (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protc, 2, 329-33. https://doi.org/10.1038/nprot.2007.30
  17. Mark MC (1992). Abiochemical hallmark of apoptosis: internucleosomal degradation of the genome. Canc Metastasis Rev, 11, 105-19. https://doi.org/10.1007/BF00048058
  18. Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Oltersdorf T, Elmore SW, Shoemaker AR, et al (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature, 435, 677-81. https://doi.org/10.1038/nature03579
  20. Piotr D, Dumanska M, Forgacz J, et al (2004). Intensity of apoptosis as related to the expression of metallothionein (MT), caspase-3 (cas-3) and Ki-67 antigen and the survival time of patients with primary colorectal adenocarcinomas. Ocz Akad Med Bialymst, 49, 5-7.
  21. Plengsuriyakarn T, Viyanant V, Eursitthichai V, et al (2012). Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models. BMC Complement Altern Med, 12, 1-19. https://doi.org/10.1186/1472-6882-12-1
  22. Rajasekaran A, Sivagnanam G, Xavier R (2008). Nutraceuticals as therapeutic agents: a review research. J Pharm Tech, 1, 328-40.
  23. Shin HR, Oh JK, Masuyer E, et al (2010). Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci, 101, 579-85. https://doi.org/10.1111/j.1349-7006.2009.01458.x
  24. Sirica AE (2005). Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatol, 41, 5-15. https://doi.org/10.1002/hep.20537
  25. Sripa B, Bethony JM, Sithithaworn P, et al (2011). Opisthoriasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop, 120, 158-68. https://doi.org/10.1016/j.actatropica.2010.07.006
  26. Sripa B, Pairojkul C (2008). Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol, 24, 349-56. https://doi.org/10.1097/MOG.0b013e3282fbf9b3
  27. Stonix VA, Kalinin VI, Avilov SA (1999). Toxin from sea cucumbers (Holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins, 8, 235-48.
  28. Tada H, Shiho O, Kuroshima M, et al (1986). An improved colorimetric assay for interleukin 2. J Immunol Methods, 93, 157-65. https://doi.org/10.1016/0022-1759(86)90183-3
  29. Tian F, Zhang X, Tong Y, et al (2005). PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther, 4, 874-82. https://doi.org/10.4161/cbt.4.8.1917
  30. Tilli CM, Stavast-Koey AJ, Ramaeker FC, et al (2002). Bax expression and growth behavior of basal cell carcinomas. J Cutan Pathol, 29, 79-87. https://doi.org/10.1034/j.1600-0560.2002.290203.x
  31. Woo M, Hakem R, Soengas MS, et al (1998). Essential contribution of caspase-3/CPP32 to apoptosis and its associated nuclear change. Genes Dev, 12, 806-19. https://doi.org/10.1101/gad.12.6.806
  32. Ye J, Coulouris G, Zaretskaya I, et al (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134. https://doi.org/10.1186/1471-2105-13-134
  33. Zheng TS, Schlosser SF, Dao T, et al (1998). Caspase-3 controls both cytoplasmic and nuclear events associated with Fasmediated apoptosis in vivo. Proc Natl Acad Sci USA, 95, 13618-23. https://doi.org/10.1073/pnas.95.23.13618

Cited by

  1. An antioxidant activity of the whole body of Holothuria scabra vol.4, pp.1, 2017, https://doi.org/10.1186/s40538-017-0087-7
  2. Pharmacological Potential of Sea Cucumbers vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051342