A test of the hybrid origin of Korean endemic Sedum latiovalifolium (Crassulaceae)

한국특산 태백기린초(돌나물과)의 교잡 기원에 대한 검증

  • Yoo, Young-Gi (Department of Biology, Kyungnam University) ;
  • Park, Ki-Ryong (Department of Urban Environmental Engineering, Kyungnam University)
  • 유영기 (경남대학교생물학과) ;
  • 박기룡 (경남대학교 도시환경공학과)
  • Received : 2016.11.12
  • Accepted : 2016.12.21
  • Published : 2016.12.30


Eighteen morphological characters from 40 populations and ten isozyme loci from 35 populations of Sedum latiovalifolium and related species were examined to investigate the degree of morphological and genetic variation. The high-frequency marker alleles $MDH-2^a$ and $PGI-1^a$ in S. aizoon, S. kamtschaticum, and S. zokuriense did not appear in the populations of S. latiovalifolium. In addition, the high-frequency allele ($MDH-2^c$) in S. latiovalifolium appeared at a very low frequency in other subg. aizoon species. Thus, the isozyme data did not support a hybrid origin of S. latiovalifolium from S. aizoon with S. kamtschaticum. The results of an unweighted pair-group method using the arithmetic average method and a principal components analysis using morphological data also did not support a hybrid origin of S. latiovalifolium. However, our data strongly suggest that some individuals from the populations found in the Gumdaebong area were most likely hybrids due to introgression between S. latiovalifolium and S. kamtschaticum or S. aizoon and S. kamtschaticum.

돌나물과 한국특산종 태백기린초의 교잡 기원에 대한 가설을 검증하고, 연관 종들의 형태적, 유전적 변이를 알아보기 위해 40개 집단으로부터 18개의 형태형질과 35개 집단에 10개 동위효소 좌위를 분석하였다. 동위효소 연구결과 가는기린초, 기린초 그리고 속리기린초에 높은 빈도로 나타났던 $MDH-2^a$, $PGI-1^a$는 태백기린초 집단에서는 전혀 나타나지 않았으며, 태백기린초의 모든 집단에서 높은 빈도로 나타나는 $MDH-2^c$는 다른 가는기린초아속 식물에서는 낮은 빈도로 나타나고 있어 태백기린초가 기린초와 가는기린초의 잡종화를 통해 기원되었다는 기존의 가설을 지지할 수 없다. 그러나 금대봉 일대의 일부 집단의 개체들은 태백기린초와 기린초 혹은 기린초와 가는기린초 사이에서 형질이입에 의해 만들어진 교잡 개체일 가능성이 높은 것으로 생각된다.



  1. Amano, M. 1990. Biosystematic study of Sedum L. subgenus Aizoon (Crassulaceae). I. Cytological and morphological variations of Sedum aizoon L. var. floribundum Nakai. Botanical Magazine Tokyo 103: 67-85.
  2. Amano, M. and H. Ohba. 1992. Chromosome number of Sedum sikokianum Maxim. (Crassulaecease). Journal of Japanese Botany 65: 167-170.
  3. Arnold, M. L. and S. A. Hodges. 1995. Are natural hybrids fit or unfit relative to their parents? Trends in Ecology and Evolution 10: 67-71.
  4. Chung, T. H. 1957. Korean Flora. Singisa, Seoul. Pp. 281-291.
  5. Chung, Y. H. and J. H. Kim. 1989. A taxonomic study of Sedum section Aizoon in Korea. Korean Journal of Plant Taxonomy 19: 189-227.
  6. Crawford, D. J. 1983. Phylogenetic and systematic inferences from electrophoretic studies. In Isozymes in Plant Genetics and Breeding. Tanksley, S. D. and T. J. Orton (eds.), Elsevier, Amsterdam. Pp. 257-287.
  7. Crawford, D. J. 1989. Enzyme electrophoresis and plant systematics. In Isozymes in Plant Biology. Soltis, D. E. and P. S. Soltis (eds.), Discorides Press, Portland. Pp. 146-164.
  8. Ellstrand, N. C., R. Whitkus and L. H. Rieseberg. 1996. Distribution of spontaneous plant hybrids. Proceedings of the National Academy of Sciences of the United States of America 93: 5090-5093.
  9. Gallez, G. P. and L. D. Gottlieb. 1982. Genetic evidence for the hybrid origin of the diploid plant Stephanomeria diegensis. Evolution 36: 1158-1167.
  10. Gastony, G. J. 1986. Electrophoretic evidence for the origin of fern species by unreduced spores. American Journal of Botany 73: 1563-1569.
  11. Gottlieb, L. D. 1981. Eletrophoretic evidence and plant populations. In Progress in Phytochemistry, Vol. 7. Reinhold, L., J. B. Harborne and T. Swain (eds.), Pergamon Press, New York. Pp. 1-46.
  12. Lee, N.-S., M. Kim, B.-S. Lee and K.-R. Park. 2001. Isozyme evidence for the allotriploid origin of Lycoris flavescens (Amaryllidaceae). Plant Systematics and Evolution 227: 227-234.
  13. Lee, T. B. 2000. A natural hybrid of the genus Sedum. Natural Plant 50: 5-6.
  14. Lee, Y. N. 1992. New taxa on Korean flora (4). Korean Journal of Plant Taxonomy 22: 7-11.
  15. Lee, Y. N. 1996. Flora of Korea. Kyo-Hak Publishing, Seoul. Pp. 268-278.
  16. Mahy, G., L. P. Bruederle, B. Connors, M. Van Hofwegen and N. Vorsa. 2000. Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry, Vaccinium oxycoccos (Ericaceae). American Journal of Botany 87: 1882-1889.
  17. Morrell, P. and L. Rieseberg. 1998. Molecular tests of the proposed diploid hybrid origin of Gilia achilleifolia (Polemoniaceae). American Journal of Botany 85: 1439-1453.
  18. Nakai, T. 1909. Flora Koreana II. Journal of the College of Science, Imperial University of Tokyo 26: 226-231.
  19. Nei, I. 1972. Genetic distance between populations. American Naturalist 106: 283-292.
  20. Oh, S. 1985. The phytogeographical studies of family Crassulaceae in Korea. Research Review Kyungpook National University 39: 123-159.
  21. Park, K.-R., J.-H. Pak and B.-B. Seo. 2003. Allozyme variation in Paraixeris: a test for the diploid hybrid origin of Paraixeris koidzumiana (Compositae). Botanical Bulletin of Academia Sinica 44: 113-122.
  22. Park, M. K. 1974. Keys to the Herbaceous Plants in Korea (Dicotyledoneae). Chungunsa, Seoul. Pp. 151-158.
  23. Rieseberg, L. H., R. Carter and S. Zona. 1990. Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species (Asteraceae). Evolution 44: 1489-1511.
  24. Rieseberg, L. H., N. C. Ellstrand and M. Arnold. 1993. What can molecular and morphological makers tell us about plant hybridization? Critical Review of Plant Science 12: 213-241.
  25. Rieseberg, L. H. and J. F. Wendel. 1993. Introgression and its consequences in plants. In Hybrid Zones and the Evolutionary Process. Harrison R. G. (ed.), Oxford University Press, New York. Pp. 70-109.
  26. Rohlf, F. J. 1992. NTSTS-pc: Numerical Taxonomy and Multivariate Analysis System (version 1.70) [Computer program]. Exeter Software, New York.
  27. Soeda, T. 1944. A cytological study on the genus Sedum, with remarks on the chromosome numbers of some related plants. Journal of the Faculty of Science of the Hokkaido Imperial University Series 5, Botany 5: 221-231.
  28. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9-27.
  29. Sun, M. 1996. The allopolyploid origin of Spiranthes hongkongensis (Orchidaceae). American Journal of Botany 83: 252-260.
  30. Swofford, D. L. and R. B. Selander. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281-283.
  31. Uhl, C. H. and R. Moran. 1972. Chromosomes of Crassulaceae from Japan and South Korea. Cytologia 37: 59-81.
  32. Wright, S. 1978. Evolution and the Genetics of Population, Vol. 4. Variability within and among Natural Population. University of Chicago Press, Chicago, IL, 590 pp.

Cited by

  1. Notes on genetic variation in Sedum sarmentosum (Crassulaceae): Implications for the origin of southern Korean populations vol.46, pp.4, 2016,
  2. 백두대간 강원도 4개 권역의 관속식물상 - 오대산, 대관령~석병산, 청옥산~덕항산, 금대봉~태백산 권역을 중심으로- vol.21, pp.4, 2016,
  3. A Molecular Phylogenetic Study of the Genus Phedimus for Tracing the Origin of “Tottori Fujita” Cultivars vol.9, pp.2, 2016,
  4. 외부형태 형질에 근거한 한국산 돌나물과내 돌나물속과 기린초속의 분류학적 고찰 vol.33, pp.2, 2016,