DOI QR코드

DOI QR Code

The Impact of Satellite Observations on Large-Scale Atmospheric Circulation in the Reanalysis Data: A Comparison Between JRA-55 and JRA-55C

위성 자료가 재분석자료의 대규모 대기 순환장에 미치는 영향: JRA-55와 JRA-55C 비교 연구

  • Park, Mingyu (School of Earth and Environmental Sciences, Seoul National University) ;
  • Choi, Yooseong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
  • 박민규 (서울대학교 지구환경과학부) ;
  • 최유성 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2016.06.13
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

The effects of satellite observations on large-scale atmospheric circulations in the reanalysis data are investigated by comparing the latest Japanese Meteorological Association's reanalysis data (JRA-55) and its family data, JRA-55 Conventional (JRA-55C). The latter is identical to the former except that satellite observations are excluded during the data assimilation process. Only conventional datasets are assimilated in JRA-55C. A simple comparison revealed a considerable difference in temperature and zonal wind fields in both the stratosphere and troposphere. Such differences are particularly large in the Southern Hemisphere and whole stratosphere where conventional ground-based measurements are limited. The effects of satellite observations on the zonal-mean tropospheric circulations are further examined in terms of the Hadley cell, eddy-driven jet, and mid-latitude storm tracks. In both hemispheres, JRA-55C exhibits slightly weaker and narrower Hadley cell than JRA-55. This is consistent with a weaker diabatic heating in JRA-55C. The eddy-driven jet shows a small difference in its latitudinal location only in the Southern Hemisphere. Likewise, while the Northern-Hemisphere storm tracks are quantitatively similar in the two datasets, Southern-Hemisphere storm tracks are relatively weaker in JRA-55C than in JRA-55. Their difference is comparable to the uncertainty between reanalysis datasets, indicating that satellite data assimilation could yield significant corrections in the zonal-mean circulation in the Southern Hemisphere.

Acknowledgement

Supported by : 국기상산업진흥원

References

  1. Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion in primarily driven by black carbon and tropospheric ozone. Nature, 485, 350-354. https://doi.org/10.1038/nature11097
  2. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. https://doi.org/10.1126/science.1063315
  3. Barnes, E. A., and L. M. Polvani, 2013: Response of the Midlatitude Jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 7117-7135. https://doi.org/10.1175/JCLI-D-12-00536.1
  4. Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11, doi:10.1029/2004JD004536. https://doi.org/10.1029/2004JD004536
  5. Chang, E. K. M., and Y., Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642-658. https://doi.org/10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2
  6. Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend. J. Climate, 21, 2611-2633. https://doi.org/10.1175/2007JCLI2011.1
  7. Choi, J., S.-W. Son, J. Lu, and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 2590-2597, doi:10.1002/2014GL059426. https://doi.org/10.1002/2014GL059426
  8. Compo, G. P., and P. D. Sardeshmukh, 2004: Storm track predictability on seasonal and decedal scales. J. Climate, 17, 3701-3720. https://doi.org/10.1175/1520-0442(2004)017<3701:STPOSA>2.0.CO;2
  9. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1-28.
  10. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  11. Dolinar, E. K., X. Dong, and B. Xi, 2016: Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dyn., 46, 2123-2144. https://doi.org/10.1007/s00382-015-2693-z
  12. Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis "JRA-55": An interim report. Sci. Online Lett. Atmos., 7, 149-152, doi:10.2151/sola.2011-038. https://doi.org/10.2151/sola.2011-038
  13. Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115. https://doi.org/10.1029/2007GL031115
  14. Fueglistaler, S., B. Legras, A. Belijaars, J.-J. Morcrette, A. Simmons, A. M. Tompkins, and S. Uppala, 2009:The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 21-37. https://doi.org/10.1002/qj.361
  15. Guo, Y., E. K. M. Chang, and S. S. Leroy, 2009: How strong are the Southern Hemisphere storm tracks? Geophys. Res. Lett., 36, L22806, doi:10.1029/2009GL040733. https://doi.org/10.1029/2009GL040733
  16. Harnik, N., and E. K. M. Chang, 2003: Storm track variations as seen in radiosonde observations and reanalysis data. J. Climate, 16, 480-495. https://doi.org/10.1175/1520-0442(2003)016<0480:STVASI>2.0.CO;2
  17. Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 14, 4108-4129.
  18. Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes-Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 5183-5191, doi:10.5194/acp-6-5183-2006. https://doi.org/10.5194/acp-6-5183-2006
  19. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  20. Kanno, Y., M. R. Abdillah, and T. Iwasaki, 2016: Longterm trend of cold air mass amount below a designated potential temperature in Northern and Southern Hemispheric winters using reanalysis datasets. J. Geophys. Res., 121, doi: 10.1002/2015JD024635. https://doi.org/10.1002/2015JD024635
  21. Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional cbservations only. Sci. Online Lett. Atmos., 10, 78-82.
  22. Kobayashi, C., and T. Iwasaki, 2016: Brewer-Dobson circulation diagnosed from JRA-55. J. Geophys. Res. Atmos., 121, 1493-1510, doi:10.1002/2015JD023476. https://doi.org/10.1002/2015JD023476
  23. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis:General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48. https://doi.org/10.2151/jmsj.2015-001
  24. Liu, J., M. Song, Y. Hu, and X. Ren, 2012: Changes in the strength and width of the Hadley Circulation since 1871. Clim. Past, 8, 1169-1175, doi:10.5194/cp-8-1169-2012. https://doi.org/10.5194/cp-8-1169-2012
  25. Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443. https://doi.org/10.1029/2006GL028443
  26. Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi: 10.1029/2008GL036076. https://doi.org/10.1029/2008GL036076
  27. Lucas, C., H. Nguyen, and B. Timbal, 2012: An observational analysis of Southern Hemisphere tropical expansion. J. Geophys. Res., 117, D1717112, doi:10.1029/2011JD01733.
  28. Martineau, P., and S.-W. Son, 2010: Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophys. Res. Lett., 37, L22801, doi:10.1029/2010GL045237. https://doi.org/10.1029/2010GL045237
  29. Martineau, P., S.-W. Son, and M. Taguchi, 2016: Dynamical consistency of reanalysis datasets in the extratropical stratosphere. J. Climate, 29, 3057-3074, doi:10.1185/JCLID-15-0469.1. https://doi.org/10.1175/JCLI-D-15-0469.1
  30. Mitas, C. M., and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03803, doi: 10.1029/2004GL021765. https://doi.org/10.1029/2004GL021765
  31. Nygard, T., T. Vihma, G. Birnbaum, J. Hartmann, J. King, T. Lachlan-Cope, R. Ladkin, C. Lupkes, and A. Weiss, 2016: Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quart. J. Roy. Meteor. Soc., 142, 684-692, doi:10.1002/qj.2691. https://doi.org/10.1002/qj.2691
  32. Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369-432. https://doi.org/10.2151/jmsj.85.369
  33. Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 2751-2767. https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2
  34. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's modern-era retrospective analysis for research and applications. J. Climate, 24, 3624-3648. https://doi.org/10.1175/JCLI-D-11-00015.1
  35. Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057. https://doi.org/10.1175/2010BAMS3001.1
  36. Schneider, T., 2006: The general circulation of the Atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655-688. https://doi.org/10.1146/annurev.earth.34.031405.125144
  37. Seo, K.-H., D. M. W. Frierson, and J.-H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 40, 5251-5258, doi:10.1002/2014GL060868. https://doi.org/10.1002/2014GL060868
  38. Son, S.-W., and S. K. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 3741-3757. https://doi.org/10.1175/JAS3571.1
  39. Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271. https://doi.org/10.1029/2010JD014271
  40. Sticker, A., and Coauthors, 2014: Description of the ERACLIM historical upper-air dataset. Earth Syst. Sci. Data, 6, 29-48, doi:10.5194/essd-6-29-2014. https://doi.org/10.5194/essd-6-29-2014
  41. Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospect for reanalysis for weather and climate. Eos, Trans. Amer. Geophys. Union., 89, 234-235. https://doi.org/10.1029/2008EO260002
  42. Wallace, J., G. Lim, and M. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439-462. https://doi.org/10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2
  43. Woolings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856-868. https://doi.org/10.1002/qj.625
  44. Wright, J. S., and S. Fueglistaler, 2013: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere. Atmos. Chem. Phys., 13, 9565-9576. https://doi.org/10.5194/acp-13-9565-2013
  45. Yin, H. J., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684. https://doi.org/10.1029/2005GL023684