Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics

수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구

  • Hong, Seok Bok (Department of Chemical Engineering, Kangwon National University) ;
  • Kang, On Yu (Department of Chemical Engineering, Kangwon National University) ;
  • Hwang, Sung Yeon (Korea Research Institute of Chemical Technology) ;
  • Heo, Young Min (SKC Advanced Technology R&D Center) ;
  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2016.11.14
  • Accepted : 2016.11.21
  • Published : 2016.12.10


In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.


supercapacitor;$MnO_2$;nanowire structure;electrochemical performance


Supported by : 한국연구재단


  1. A. Sternberg and A. Bardow, Power-to-What? - Environmental assessment of energy storage systems, Energy Environ. Sci., 8, 389-400 (2015).
  2. G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, and H.-J. Sohn, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci., 4, 1986-2002 (2011).
  3. F. D. Bruijn, The current status of fuel cell technology for mobile and stationary applications, Green Chem., 7, 132-150 (2005).
  4. Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8, 702-730 (2015).
  5. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev., 44, 7484-7539 (2015).
  6. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014).
  7. S. P. Jiang, Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells, J. Mater. Chem. A, 2, 7637-7655 (2014).
  8. M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro- scale devices: recent advances in design and fabrication of micro- supercapacitors, Energy Environ Sci., 7, 867-884 (2014).
  9. Y. Zheng, Y. Yang, S. Chen, and Q. Yuan, Smart, stretchable and wearable supercapacitors: prospects and challenges, Cryst. Eng. Comm., 18, 4218-4235 (2016).
  10. C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison, and C. Lekakou, Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC), J. Mater. Chem. A, 1, 6037-6042 (2013).
  11. G. H. Jeong, I. Lee, J.-G. Kang, H. Lee, S. Yoon, and S.-W. Kim, Mesoporous hollow carbons on graphene and their electrochemical properties, RSC Adv., 5, 73119-73125 (2015).
  12. E. Senokos, V. Reguero, J. Palma, J. J. Vilatela, and R. Marcilla, Macroscopic fibers of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance, Nanoscale, 8, 3620-3628 (2016).
  13. B. Hsia, M. S. Kim, C. Carraro, and R. Maboudian, Cycling characteristics of high energy density, electrochemically activated porous- carbon supercapacitor electrodes in aqueous electrolytes, J. Mater. Chem. A, 1 10518-10523 (2013).
  14. K. Makgopa, P. M. Ejikeme, C. J. Jafta, K. Raju, M. Zeiger, V. Presser, and K. I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessitetype manganese oxide nanohybrids, J. Mater. Chem. A, 3, 3480-3490 (2015).
  15. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015).
  16. S. Conte, G.-G. Rodriguez-Calero, S. E. Burkhardt, M. A. Lowe, and H. D. Abruna, Designing conducting polymer films for electrochemical energy storage technologies, RSC Adv., 3, 1957-1964 (2013).
  17. B. Rajender and S. Palaniappan, Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and the thus prepared polyaniline in high performance supercapacitors, New J. Chem. 39, 5382-5388 (2015).
  18. Z. Zhou, Y. Zhu, Z. Wu, F. Lu, M. Jing, and X. Ji, Amorphous $RuO_2$ coated on carbon spheres as excellent electrode materials for supercapacitors, RSC Adv., 4, 6927-6932 (2014).
  19. S. K. Meher and G. R. Rao, Ultralayered $Co_3O_4$ for High-Performance Supercapacitor Applications, J. Phys. Chem. C, 115, 15646-15654 (2011).
  20. M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, $MnO_2$-based nanostructures for high-performance supercapacitors, J. Mater. Chem. A, 3, 21380-21423 (2015).
  21. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, and X. Zhang, High-performance ${\alpha}-MnO_2$ nanowire electrode for supercapacitors, Appl. Energy, 153, 94-100 (2015).
  22. J. Ma, Q. Cheng, V. Pavlinek, P. Saha, and C. Li, Morphology-controllable synthesis of $MnO_2$ hollow nanospheres and their supercapacitive performance, New J. Chem., 37, 722-728 (2013).
  23. C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan, and Z. Xu, Ultrathin $MnO_2$ nanoflakes as efficient catalysts for oxygen reduction reaction, Chem. Commun., 50, 7885-7888 (2014).
  24. J. H. Zeng, Y. F. Wang, Y. Yang, and J. Zhang, Synthesis of sea-urchin shaped ${\gamma}-MnO_2$ nanostructures and their application in lithium batteries, J. Mater. Chem., 20, 10915-10918 (2010).
  25. Q. Li, Z.-L. Wang, G.-R. Li, R. Guo, L.-X. Ding, and Y.-X. Tong, Design and synthesis of $MnO_2/Mn/MnO_2$ sandwich-structured nanotube arrays with gigh supercapacitive performance for electrochemical energy storage, Nano Lett., 12, 3803-3807 (2012).
  26. R. R. A. S. Nair, S. Ramakrishna, A. P. S. K, K. R. V. Subramanian, S. N. T. N. Kim, S. V. Nair, and A. Balakrishnan, Ultra fine $MnO_2$ nanowire based high performance thin film rechargeable electrodes: Effect of surface morphology, electrolytes and concentrations, J. Mater. Chem., 22, 20465-20471 (2012).
  27. A. M. Toufiq, F. Wang, Q.-U. A. Javed, and Q. Li, Y. Li, Hydrothermal synthesis of $MnO_2$ nanowires: structural characterizations, optical and magnetic properties, Appl. Phys. A, 116, 1127-1132 (2014).
  28. K. Kim, M.-S. Kim, and T. Yeu, The preparation of non-aqueous supercapacitors with lithium transition-Metal oxide/activated carbon composite positive electrodes, Bull. Korean Chem. Soc., 31, 3183-3189 (2010).
  29. X. Zhang, W. Yang, J. Yang, and D. G. Evans, Synthesis and characterization of ${\alpha}-MnO_2$ nanowires: Self-assembly and phase transformation to ${\beta}-MnO_2$ microcrystals, J. Cryst. Growth, 310, 716-722 (2008).
  30. C.-L. Ho and M.-S. Wu, Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high- performance supercapacitors, J. Phys. Chem. C, 115, 22068-22074 (2011).
  31. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical $MnO_2$ nanosheet arrays of carbon fiber for high-performance pseudocapacitors, J. Electroanal. Chem., 759, 95-100 (2015).