Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells

사람피부세포에서 카렌둘라 꽃 추출물의 항산화 및 산화적 스트레스에 대한 세포보호효과

  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Kim, Ga Yoon (Hansung Science High School) ;
  • Yu, Ji Yeon (Hansung Science High School) ;
  • Kim, Jee Won (Hansung Science High School) ;
  • Yang, Ye Rim (Hansung Science High School) ;
  • Jeon, Young Hee (Hansung Science High School) ;
  • Jeong, Yoon Ju (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Kim, A Rang (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 현송화 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 김가윤 (한성과학고등학교) ;
  • 유지연 (한성과학고등학교) ;
  • 김지원 (한성과학고등학교) ;
  • 양예림 (한성과학고등학교) ;
  • 전영희 (한성과학고등학교) ;
  • 정윤주 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 김아랑 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터)
  • Received : 2016.10.19
  • Accepted : 2016.11.18
  • Published : 2016.12.10


In this study, we investigated the total phenolic and flavonoid contents, antioxidant activity and cellular protective effects against oxidative stress on human skin cells in 50% ethanol extract and its fractions of Calendula officinalis (C. officinalis) flowers. We measured the antioxidant effects of 50% ethanol extract and its fractions of C. officinalis flowers on the free radical scavenging activity ($FSC_{50}$), the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) and the inhibition of intracellular ROS generation in human skin cells. These results showed that the antioxidant effect of the ethyl acetate and aglycone fraction was more than the 50% ethanol extract of C. officinalis flowers. We also investigated the cellular protective activity and the results showed that treatment of the ethyl acetate fraction ($0.05-3.13{\mu}g/mL$) protects human skin cells in a concentration-dependent manner when the skin cell damages were induced by treating them with $H_2O_2$. In addition, the aglycone fraction ($1.56-3.13{\mu}g/mL$) shows cellular protective effects on the UV-induced cell damages in a dose-dependent manner. These results suggest that the fractions of C. officinalis flowers can function as a natural antioxidant agent of cosmetics in human skin cells exposed to oxidative stress by ROS scavenging effects.


  1. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015).
  2. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B, 63, 41-51 (2001).
  3. D. Bernhard, C. Moser, A. Backovic, and G. Wick, Cigarette smoke - an aging accelerator?, Exp. Gerontol., 42, 160-165 (2007).
  4. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Sci. Korea, 23, 75-132 (1997).
  5. Y. Al-Nuaimi, M. J. Sherratt, and C. E. Griffiths, Skin health in older age, Maturitas, 79, 256-264 (2014).
  6. J. Wohlrab, K. Hilpert, and L. Wolff, Epidermal aging and anti-aging strategies, Hautarzt, 67, 107-111 (2016).
  7. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680 (2012).
  8. J. H. Ha, Y. J. Jeong, J. S. Seong, K. M. Kim, A Young Kim, M. M. Fu, J. Y. Suh, N. H. Lee, J. Park, and S. N. Park, Antioxidant and antibacterial activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) extracts obtained by various extract conditions, J. Soc. Cosmet. Sci. Korea, 41, 361-373 (2015).
  9. J. S. Seong, K. M. Kim, J. Y. Suh, J. H. Ha, and S. N. Park, Antioxidative activities of whole plant extracts of Solanum nigrum L., J. Korean Oil Chem. Soc., 32, 781-788 (2015).
  10. Y. M. Fonseca, C. D. Catini, F. T. Vicentini, A. Nomizo, R. F. Gerlach, and M. J. Fonseca, Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion, J. Ethnopharmacol., 127, 596-601 (2010).
  11. T. A. Re, D. Mooney, E. Antignac, E. Dufour, I. Bark, V. Srinivasan, and G. Nohynek, Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products, Food Chem. Toxicol., 47, 1246-1254 (2009).
  12. P. K. Chandran and R. Kuttan, Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns, J. Clin. Biochem. Nutr., 43, 58-64 (2008).
  13. E. Jimenez-Medina, A. Garcia-Lora, L. Paco, I. Algarra, A. Collado, and F. Garrido, A new extract of the plant Calendula officinalis produces a dual in vitro effect: Cytotoxic anti-tumor activity and lymphocyte activation, BMC Cancer, 6, 119 (2006).
  14. K. Zitterl-Eglseer, S. Sosa, J. Jurenitsch, M. Schubert-Zsilavecz, R. Della Loggia, A. Tubaro, M. Bertoldi, and C. Franz, Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.), J. Ethnopharmacol., 57, 139-144 (1997).
  15. R. C. Alves, A. S. G. Costa, M. Jerez, S. Casal, J. Sineiro, M. J. Nunez, and B. Oliveira, Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors, J. Agric. Food Chem., 58, 12221-12229 (2010).
  16. M. F. Barroso, J. P. Noronha, C. Delerue-Matos, and M. B. Oliveira, Flavored waters: Influence of ingredients on antioxidant capacity and terpenoid profile by HS-SPME/GC-MS, J. Agric. Food Chem., 59, 5062-5072 (2011).
  17. S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects. J. Ind. Eng. Chem., 20, 3046-3052 (2014).
  18. M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-kappaB and activation of AMPK/Nrf2 in HaCaT Cells and human dermal fibroblasts, J. Agric. Food Chem., 63, 5428-5438 (2015).
  19. S. W. Shin, E. Jung, S. Kim, J. H. Kim, E. G. Kim, J. Lee, and D. Park, Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage, PLoS One, 8, e61971 (2013).
  20. J. M. Silvan, M. Reguero, and S. de Pascual-Teresa, A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells, Food Funct., 7, 1067-1076 (2016).
  21. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55-63 (1983).
  22. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radic. Biol. Med., 20, 933-956 (1996).
  23. L. Packer, Ultraviolet radiation(UVA,UVB) and skin antioxidants, New Compr. Biochem., 28, 239-255 (1994).

Cited by

  1. Flowers on Melanoma Cells pp.00318655, 2019,