DOI QR코드

DOI QR Code

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant

새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석

  • Lee, Byoung Jun (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Sang Bum (Department of Chemical Engineering, Kyonggi University)
  • Received : 2016.08.12
  • Accepted : 2016.10.04
  • Published : 2016.12.10

Abstract

In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.

Keywords

non-halogen;phosphorus flame retardant;polyurethane

Acknowledgement

Supported by : 경기대학교

References

  1. L. Shi, Z. M. Li, M. B. Yang, B. Yin, Q. M. Zhou, C. R. Tian, and J. H. Wang, Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams, Polym. Plast. Technol. Eng., 44(7), 1323-1337 (2005). https://doi.org/10.1080/03602550500208145
  2. C. Yang, Z. H. Zhuang, and Z. G. Yang, Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam. J. Appl. Sci., 131(1), 1-7 (2014).
  3. M. C. Saha, M. E. Kabir, and S. Jeelani, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticle, Mater. Sci. Eng. A, 479, 213-222 (2008). https://doi.org/10.1016/j.msea.2007.06.060
  4. Y. H. Song, D. M. Ha, and K. S. Chung, Assessment of combustion property for epoxy/montmorillonite composite, Proceedings of Korean Institute of Fire Science and Engineering Spring Conference, 4, 168-171 (2008).
  5. P. A. Atkinson, P. J. Haines, G. A. Skinner, and T. J. Lever, Studies of fire-retardant polyester thermosets using thermal methods, J. Therm. Anal. Calorim., 59, 395-408 (2000). https://doi.org/10.1023/A:1010129206206
  6. T. S. Hwang, B. J. Lee, Y. K. Yang, J. H. Choi, and H. J. Kim, The R&D trends of polymer flame retardants, Korean Ind. Chem. News, 8(6), 36-53 (2005)
  7. K. Y. Kim, W. J. Seo, J. C. Lee, J. S. Seo, and S. B. Kim, Effect of flame retardants on flame retardancy of rigid polyurethane foam, J. Korean Inst. Gas, 17(5), 75-80 (2013). https://doi.org/10.7842/kigas.2013.17.5.75
  8. B. N. Jang and J. H. Choi, Research trend of flame retardant and flame retardant resin, Polym. Sci. Technol., 20(1), 8-15 (2009).
  9. Y. G. Han, S. K. Min, and C. Y. Park, Synthesis and characterization of non-halogen type phosphorus-based flame retardant, Elastom. Compos., 49(4), 313-322 (2014). https://doi.org/10.7473/EC.2014.49.4.313
  10. Y. J. Chung, Flame retardant properties of polyurethane by the addition of phosphorus compounds, Fire Sci. Eng., 20(4), 110-115 (2006).
  11. M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, and M. Gleria, Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes, Polym. Degrad. Stab., 87, 287-292 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.023
  12. R. Yang, W. Hu, L. Xu, Y. Song, and J. Li, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate, Polym. Degrad. Stab., 122, 102-109 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.10.007
  13. W. Xu, and G. Wang, Influence of thermal behavior of phosphorus compounds on their flame retardant effect in PU rigid foam, Fire Mater., 40(6), 826-835 (2016). https://doi.org/10.1002/fam.2346
  14. H. Ma, L. Tong, Z. Xu, Z. Fang, Y. Jin, and F. Lu, A novel intumescent flame retardant: Synthesis and application in ABS copolymer, Polym. Degrad. Stab., 92(4), 720-726 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.12.009
  15. D. Chen, Y. Wang, X. Hu, D. Wang, M. Qu, and B. Yang, Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics, Polym. Degrad. Stab., 88(2), 349-356 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.11.010
  16. C. B. Kim and S. B. Kim, Effect of halogen-phosphorus flame retardant content on properties of rigid polyurethane foam. Appl. Chem. Eng., 24(1), 77-81 (2013).
  17. S. H. Koh and S. B. Kim, Physical properties of rigid polyurethane foams prepared by co-blowing agents, Appl. Chem., 8(1), 53-58 (2004).
  18. I. Vitkauskiene, R. Makuska, U. Stirna, and U. Cabulis, Thermal properties of polyurethane-polyisocyanurate foams based on poly (ethylene terephthalate) waste, Mater. Sci., 17(3), 249-253 (2011).