DOI QR코드

DOI QR Code

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment

물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향

  • Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 고은서 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2016.11.15
  • Accepted : 2016.11.23
  • Published : 2016.12.10

Abstract

While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

Keywords

antibiotics;water pollutant;optical biosensor;electrochemical biosensor;antimicrobials

Acknowledgement

Supported by : Kyungpook National University

References

  1. J. O. Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 1st ed., 3-5, Review on Antimicrobial Resistance, London, UK (2014).
  2. G. V. Doern, K. P. Heilmann, H. K. Huynh, P. R. Rhomberg, S. L. Coffman, and A. B. Brueggemann, Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999-2000, including a comparison of resistance rates since 1994-1995, Antimicrob. Agents Chemother., 45, 1721-1729 (2001). https://doi.org/10.1128/AAC.45.6.1721-1729.2001
  3. N. B. Shoemaker, H. Vlamakis, K. Hayes, and A. A. Salyers, Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol., 67, 561-568 (2001). https://doi.org/10.1128/AEM.67.2.561-568.2001
  4. R. M. Klevens, J. R. Edwards, F. C. Tenover, L. C. McDonald, T. Horan, and R. Gaynes and National Nosocomial Infections Surveillance System, Changes in the epidemiology of methicillin- resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003, Clin. Infect. Dis., 42, 389-391 (2006). https://doi.org/10.1086/499367
  5. M. E. Falagas and I. A. Bliziotis, Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?, Int. J. Antimicrob. Agents, 29, 630-636 (2007). https://doi.org/10.1016/j.ijantimicag.2006.12.012
  6. S. Rodriguez-Mazaz and H. S. Weinberg, Meeting report: Pharmaceuticals in water-An interdisciplinary approach to a public health challenge, Environ. Health Perspect., 118, 1016-1020 (2010). https://doi.org/10.1289/ehp.0901532
  7. L. Zhao, Y. H. Dong, and H. Wang, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Sci. Total Environ., 408, 1069-1075 (2010). https://doi.org/10.1016/j.scitotenv.2009.11.014
  8. F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19, 260-265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006
  9. A. J. Alanis, Resistance to antibiotics: are we in the postantibiotic era?, Arch. Med. Res., 36, 697-705 (2005). https://doi.org/10.1016/j.arcmed.2005.06.009
  10. S. B. Levy, The Antibiotic Paradox; How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd ed., 1-14, Perseus Publishing, Cambridge, MA, USA (2002).
  11. M. Seifrtova, L. Novakova, C. Lino, A. Pena, and P. Solich, An overview of analytical methodologies for the determination of antibiotics in environmental waters, Anal. Chim. Acta, 649, 158-179 (2009). https://doi.org/10.1016/j.aca.2009.07.031
  12. A. van Wezel, M. Mons, and W. van Delft, New methods to monitor emerging chemicals in the drinking water production chain, J. Environ. Monit., 12, 80-89 (2010). https://doi.org/10.1039/B912979K
  13. W. Giger, Hydrophilic and amphiphilic water pollutants: Using advanced analytical methods for classic and emerging contaminants, Anal. Bioanal. Chem., 393, 37-44 (2009). https://doi.org/10.1007/s00216-008-2481-2
  14. V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, Point of care diagnostics: status and future, Anal. Chem., 84, 487-515 (2012). https://doi.org/10.1021/ac2030199
  15. E. B. Bahadir and M. K. Sezginturk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses, Anal. Biochem., 478, 107-120 (2015). https://doi.org/10.1016/j.ab.2015.03.011
  16. N. A. Mungroo and S. Neethirajan, Biosensors for the detection of antibiotics in poultry industry - A review, Biosensors, 4, 472-493 (2014). https://doi.org/10.3390/bios4040472
  17. J. Kling, Moving diagnostics from the bench to the bedside, Nat. Biotechnol., 24, 891-893 (2006). https://doi.org/10.1038/nbt0806-891
  18. M. A. Burns, Everyone's a (future) chemist, Science, 296, 1818-1819 (2002). https://doi.org/10.1126/science.1073562
  19. A. Rasooly, Biosensor technologies, Methods, 37, 1-3 (2005). https://doi.org/10.1016/j.ymeth.2005.05.004
  20. H. Craighead, Future lab-on-a-chip technologies forinterrogating individual molecules, Nature, 442, 387-393 (2006). https://doi.org/10.1038/nature05061
  21. H. Zhu and M. Snyder, Protein chip technology, Curr. Opin. Chem. Biol., 7, 55-63 (2003). https://doi.org/10.1016/S1367-5931(02)00005-4
  22. S. Song, L. Wang, J. Li, J. Zhao, and C. Fan, Aptamer-based biosensors, Trends Anal. Chem., 27, 108-117 (2008). https://doi.org/10.1016/j.trac.2007.12.004
  23. M. Uttamchandani, J. Wang, and S. Q. Yao, Protein and small molecule microarrays: Powerful tools for high-throughput proteomics, Mol. BioSys., 2, 58-68 (2006). https://doi.org/10.1039/B513935J
  24. H. J. Lee, S. Kim, H. Y. Han, and E. Kim, Synthesis of plasmonic gold nanoparticles with different shapes and their applications to surface plasmon resonance biosensors, Polym. Sci. Technol., 26, 9-15 (2015).
  25. K. Reder-Christ and G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments, Sensors (Basel), 11, 9450-9466 (2011). https://doi.org/10.3390/s111009450
  26. J. Yuan, R. Oliver, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol, Anal. Chem., 80, 8329-8333 (2008). https://doi.org/10.1021/ac801301p
  27. M. Frasconi, R. Tel-Vered, M. Riskin, and I. Willner, Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites, Anal. Chem., 82, 2512-2519 (2010). https://doi.org/10.1021/ac902944k
  28. S. R. Raz, M. G. E. G. Bremer, W. Haasnoot, and W. Norde, Label-Free and Multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor, Anal. Chem., 81, 7743-7749 (2009). https://doi.org/10.1021/ac901230v
  29. J. Adrian, S. Pasche, J. M. Diserens, F. Sanchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk, Biosens. Bioelectron., 24, 3340-3346 (2009). https://doi.org/10.1016/j.bios.2009.04.036
  30. S. Korposh, I. Chianella, A. Guerreiro, S. Caygill, S. Piletsky, S. W. James, and R. P. Tatam, Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles, Analyst, 139, 2229-2236 (2014). https://doi.org/10.1039/C3AN02126B
  31. A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber, and G. Urban, Multianalyte antibiotic detection on an electrochemical microfluidic platform, Anal. Chem., 88, 10036-10043 (2016). https://doi.org/10.1021/acs.analchem.6b02294
  32. A. A. Rowe, E. A. Miller, and K. W. Plaxco, Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor, Anal. Chem., 82, 7090-7095 (2010). https://doi.org/10.1021/ac101491d
  33. F. Giroud, K. Gorgy, C. Gondran, S. Cosnier, D. G. Pinacho, M. P. Marco, and F. J. Sanchez-Baeza, Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin, Anal. Chem., 81, 8405-8409 (2009). https://doi.org/10.1021/ac901290m
  34. P. Peljo and H. H. Girault, Liquid/Liquid Interfaces, Electrochemistry at, Encyclopedia of Analytical Chemistry, 2nd ed., 1-28, John Wiley & Sons, NY, USA (2012).
  35. H. R. Kim, S. H. Baek, and H. J. Lee, Creating Electrochemical sensors utilizing ion transfer reactions across micro-liquid/liquid interfaces, Appl. Chem. Eng., 24, 443-455 (2013).
  36. M. Velicky, A. N. J. Rodgers, R. A. W. Dryfe, and K. Tam, Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs, ADMET DMPK, 2, 143-156 (2014).
  37. E. V. Vladimirova, A. A. Dunaeva, O. M. Petrukhin, and E. V. Shipulo, Study of the transfer of aminoglycoside antibiotics through the phase boundary water/o-nitrophenyl octyl ether by voltammetry at the interface of two immiscible electrolyte solutions, J. Anal. Chem., 68, 253-260 (2013). https://doi.org/10.1134/S106193481303012X
  38. H. R. Kim, C. M. Pereira, H. Y. Han, and H. J. Lee, Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications, Anal. Chem., 87, 5356-5362 (2015). https://doi.org/10.1021/acs.analchem.5b00653
  39. H. Han, Investigation on Antibiotic Transfer Processes across an Interface between Two Immiscible Electrolyte Solutions, MS Thesis, Kyungpook National University, Daegu, Korea (2016).
  40. B. Halling-Sorensen, S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lutzhoft, and S. E. Jorgensen, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36, 357-393 (1998). https://doi.org/10.1016/S0045-6535(97)00354-8
  41. L. H. M. L. M. Santos, A. N. Araujo, A. Fachini, A. Pena, C. Delerue-Matos, and M. C. B. S. M. Montenegro, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, J. Hazard. Mater., 175, 45-95 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.100
  42. Y. Kim, J. Jung, M. Kim, J. Park, A. B. A. Boxall, and K. Choi, Prioritizing veterinary pharmaceuticals for aquatic environment in Korea, Environ. Toxicol. Pharmacol., 26, 167-176 (2008). https://doi.org/10.1016/j.etap.2008.03.006
  43. X. Chen, D. Kim, and S. Hong, The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system?, Nanomedicine, 9, 565-567 (2014). https://doi.org/10.2217/nnm.14.7
  44. J. Yuan, J. Addo, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol without surface regeneration, Anal. Biochem., 390, 97-99 (2009). https://doi.org/10.1016/j.ab.2009.04.003
  45. N. de-los-Santos-Alvarez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco, SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B, Biosens. Bioelectron., 24, 2547-2553 (2009). https://doi.org/10.1016/j.bios.2009.01.011
  46. F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples, Biosens. Bioelectron., 26, 1231-1238 (2010). https://doi.org/10.1016/j.bios.2010.06.012
  47. A. Zengin, U. Tamer, and T. Caykara, Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles, Anal. Chim. Acta, 817, 33-41 (2014). https://doi.org/10.1016/j.aca.2014.01.042
  48. J. Zdunek, E. Benito-Pena, A. Linares, A. Falcimaigne-Cordin, G. Orellana, K. Haupt, and M. C. Moreno-Bondi, Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics, Chemistry, 19, 10209-10216 (2013). https://doi.org/10.1002/chem.201300101
  49. B. G. Healey and D. R. Walt, Improved fiber-optic chemical sensor for penicillin, Anal. Chem., 67, 4471-4476 (1995). https://doi.org/10.1021/ac00120a007
  50. M. K. Pawar, K. C. Tayade, S. K. Sahoo, P. P. Mahulikar, A. S. Kuwar, and B. L. Chaudhari, Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin, Biosens. Bioelectron., 81, 274-279 (2016). https://doi.org/10.1016/j.bios.2016.03.003
  51. P. H. Chan, H. B. Liu, Y. W. Chen, K. C. Chan, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Rational design of a novel fluorescent biosensor for ${\beta}$-lactam antibiotics from a Class A a-lactamase, J. Am. Chem. Soc., 126, 4074-4075 (2004). https://doi.org/10.1021/ja038409m
  52. P. H. Chan, P. K. So, D. L. Ma, Y. Zhao, T. S. Lai, W. H. Chung, K. C. Chan, K. F. Yiu, H. W. Chan, F. M. Siu, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Fluorophore-labeled ${\beta}$-lactamase as a biosensor for ${\beta}$-lactam antibiotics: A study of the biosensing process, J. Am. Chem. Soc., 130, 6351-6361 (2008). https://doi.org/10.1021/ja076111g
  53. Y. M. Liu, Y. X. Jia, and W. Tian, Determination of quinolone antibiotics in urine by capillary electrophoresis with chemiluminescence detection, J. Sep. Sci., 31, 3765-3771 (2008). https://doi.org/10.1002/jssc.200800373
  54. J. Kurittu, S. Lonnberg, M. Virta, and M. Karp, A group-specific microbiological test for the detection of tetracycline residues in raw milk, J. Agric. Food Chem., 48, 3372-3377 (2000). https://doi.org/10.1021/jf9911794
  55. P. Dzomba, J. Kugara, and M. F. Zaranyika, Extraction of tetracycline antimicrobials from river water and sediment: a comparative study of three solid phase extraction methods, Afr. J. Pharm. Pharmacol., 9, 523-531 (2015). https://doi.org/10.5897/AJPP2015.4341
  56. K. C. Ahn, A. Ranganathan, C. S. Bever, S. H. Hwang, E. B. Holland, K. Morisseau, I. N. Pessah, B. D. Hammock, and S. J. Gee, Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay, Environ. Sci. Technol., 50, 3754-3761 (2016). https://doi.org/10.1021/acs.est.5b05357
  57. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, and S. Zhu, Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay, Sensors (Basel), 14, 21872-21888 (2014). https://doi.org/10.3390/s141121872
  58. A. L. Saber, M. A. Elmosallamy, H. M. Killa, and M. M. Ghoneim, Selective potentiometric method for determination of flucloxacillin antibiotic, J. Taibah Univ. Sci., 7, 195-201 (2013). https://doi.org/10.1016/j.jtusci.2013.06.002
  59. Y. S. Kim, J. H. Niazi, and M. B. Gu, Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip, Anal. Chim. Acta, 634, 250-254 (2009). https://doi.org/10.1016/j.aca.2008.12.025
  60. J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, and C. Zhang, Fast determination of the tetracyclines in milk samples by the aptamer biosensor, Analyst, 135, 2706-2710 (2010). https://doi.org/10.1039/c0an00237b
  61. B. Chen, M. Ma, and X. Su, An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and beta-lactamase on glassy carbon electrode, Anal. Chim. Acta, 674, 89-95 (2010). https://doi.org/10.1016/j.aca.2010.06.014
  62. M. Jacobs, V. J. Nagaraj, T. Mertz, A. P. Selvam, T. Ngo, and S. Prasad, An electrochemical sensor for the detection of antibiotic contaminants in water, Anal. Methods, 5, 4325-4329 (2013). https://doi.org/10.1039/c3ay40994e