Development Trend of Biosensors for Antimicrobial Drugs in Water Environment

물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향

  • Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 고은서 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2016.11.15
  • Accepted : 2016.11.23
  • Published : 2016.12.10


While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.


Supported by : Kyungpook National University


  1. J. O. Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 1st ed., 3-5, Review on Antimicrobial Resistance, London, UK (2014).
  2. G. V. Doern, K. P. Heilmann, H. K. Huynh, P. R. Rhomberg, S. L. Coffman, and A. B. Brueggemann, Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999-2000, including a comparison of resistance rates since 1994-1995, Antimicrob. Agents Chemother., 45, 1721-1729 (2001).
  3. N. B. Shoemaker, H. Vlamakis, K. Hayes, and A. A. Salyers, Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol., 67, 561-568 (2001).
  4. R. M. Klevens, J. R. Edwards, F. C. Tenover, L. C. McDonald, T. Horan, and R. Gaynes and National Nosocomial Infections Surveillance System, Changes in the epidemiology of methicillin- resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003, Clin. Infect. Dis., 42, 389-391 (2006).
  5. M. E. Falagas and I. A. Bliziotis, Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?, Int. J. Antimicrob. Agents, 29, 630-636 (2007).
  6. S. Rodriguez-Mazaz and H. S. Weinberg, Meeting report: Pharmaceuticals in water-An interdisciplinary approach to a public health challenge, Environ. Health Perspect., 118, 1016-1020 (2010).
  7. L. Zhao, Y. H. Dong, and H. Wang, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Sci. Total Environ., 408, 1069-1075 (2010).
  8. F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19, 260-265 (2008).
  9. A. J. Alanis, Resistance to antibiotics: are we in the postantibiotic era?, Arch. Med. Res., 36, 697-705 (2005).
  10. S. B. Levy, The Antibiotic Paradox; How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd ed., 1-14, Perseus Publishing, Cambridge, MA, USA (2002).
  11. M. Seifrtova, L. Novakova, C. Lino, A. Pena, and P. Solich, An overview of analytical methodologies for the determination of antibiotics in environmental waters, Anal. Chim. Acta, 649, 158-179 (2009).
  12. A. van Wezel, M. Mons, and W. van Delft, New methods to monitor emerging chemicals in the drinking water production chain, J. Environ. Monit., 12, 80-89 (2010).
  13. W. Giger, Hydrophilic and amphiphilic water pollutants: Using advanced analytical methods for classic and emerging contaminants, Anal. Bioanal. Chem., 393, 37-44 (2009).
  14. V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, Point of care diagnostics: status and future, Anal. Chem., 84, 487-515 (2012).
  15. E. B. Bahadir and M. K. Sezginturk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses, Anal. Biochem., 478, 107-120 (2015).
  16. N. A. Mungroo and S. Neethirajan, Biosensors for the detection of antibiotics in poultry industry - A review, Biosensors, 4, 472-493 (2014).
  17. J. Kling, Moving diagnostics from the bench to the bedside, Nat. Biotechnol., 24, 891-893 (2006).
  18. M. A. Burns, Everyone's a (future) chemist, Science, 296, 1818-1819 (2002).
  19. A. Rasooly, Biosensor technologies, Methods, 37, 1-3 (2005).
  20. H. Craighead, Future lab-on-a-chip technologies forinterrogating individual molecules, Nature, 442, 387-393 (2006).
  21. H. Zhu and M. Snyder, Protein chip technology, Curr. Opin. Chem. Biol., 7, 55-63 (2003).
  22. S. Song, L. Wang, J. Li, J. Zhao, and C. Fan, Aptamer-based biosensors, Trends Anal. Chem., 27, 108-117 (2008).
  23. M. Uttamchandani, J. Wang, and S. Q. Yao, Protein and small molecule microarrays: Powerful tools for high-throughput proteomics, Mol. BioSys., 2, 58-68 (2006).
  24. H. J. Lee, S. Kim, H. Y. Han, and E. Kim, Synthesis of plasmonic gold nanoparticles with different shapes and their applications to surface plasmon resonance biosensors, Polym. Sci. Technol., 26, 9-15 (2015).
  25. K. Reder-Christ and G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments, Sensors (Basel), 11, 9450-9466 (2011).
  26. J. Yuan, R. Oliver, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol, Anal. Chem., 80, 8329-8333 (2008).
  27. M. Frasconi, R. Tel-Vered, M. Riskin, and I. Willner, Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites, Anal. Chem., 82, 2512-2519 (2010).
  28. S. R. Raz, M. G. E. G. Bremer, W. Haasnoot, and W. Norde, Label-Free and Multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor, Anal. Chem., 81, 7743-7749 (2009).
  29. J. Adrian, S. Pasche, J. M. Diserens, F. Sanchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk, Biosens. Bioelectron., 24, 3340-3346 (2009).
  30. S. Korposh, I. Chianella, A. Guerreiro, S. Caygill, S. Piletsky, S. W. James, and R. P. Tatam, Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles, Analyst, 139, 2229-2236 (2014).
  31. A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber, and G. Urban, Multianalyte antibiotic detection on an electrochemical microfluidic platform, Anal. Chem., 88, 10036-10043 (2016).
  32. A. A. Rowe, E. A. Miller, and K. W. Plaxco, Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor, Anal. Chem., 82, 7090-7095 (2010).
  33. F. Giroud, K. Gorgy, C. Gondran, S. Cosnier, D. G. Pinacho, M. P. Marco, and F. J. Sanchez-Baeza, Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin, Anal. Chem., 81, 8405-8409 (2009).
  34. P. Peljo and H. H. Girault, Liquid/Liquid Interfaces, Electrochemistry at, Encyclopedia of Analytical Chemistry, 2nd ed., 1-28, John Wiley & Sons, NY, USA (2012).
  35. H. R. Kim, S. H. Baek, and H. J. Lee, Creating Electrochemical sensors utilizing ion transfer reactions across micro-liquid/liquid interfaces, Appl. Chem. Eng., 24, 443-455 (2013).
  36. M. Velicky, A. N. J. Rodgers, R. A. W. Dryfe, and K. Tam, Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs, ADMET DMPK, 2, 143-156 (2014).
  37. E. V. Vladimirova, A. A. Dunaeva, O. M. Petrukhin, and E. V. Shipulo, Study of the transfer of aminoglycoside antibiotics through the phase boundary water/o-nitrophenyl octyl ether by voltammetry at the interface of two immiscible electrolyte solutions, J. Anal. Chem., 68, 253-260 (2013).
  38. H. R. Kim, C. M. Pereira, H. Y. Han, and H. J. Lee, Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications, Anal. Chem., 87, 5356-5362 (2015).
  39. H. Han, Investigation on Antibiotic Transfer Processes across an Interface between Two Immiscible Electrolyte Solutions, MS Thesis, Kyungpook National University, Daegu, Korea (2016).
  40. B. Halling-Sorensen, S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lutzhoft, and S. E. Jorgensen, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36, 357-393 (1998).
  41. L. H. M. L. M. Santos, A. N. Araujo, A. Fachini, A. Pena, C. Delerue-Matos, and M. C. B. S. M. Montenegro, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, J. Hazard. Mater., 175, 45-95 (2010).
  42. Y. Kim, J. Jung, M. Kim, J. Park, A. B. A. Boxall, and K. Choi, Prioritizing veterinary pharmaceuticals for aquatic environment in Korea, Environ. Toxicol. Pharmacol., 26, 167-176 (2008).
  43. X. Chen, D. Kim, and S. Hong, The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system?, Nanomedicine, 9, 565-567 (2014).
  44. J. Yuan, J. Addo, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol without surface regeneration, Anal. Biochem., 390, 97-99 (2009).
  45. N. de-los-Santos-Alvarez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco, SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B, Biosens. Bioelectron., 24, 2547-2553 (2009).
  46. F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples, Biosens. Bioelectron., 26, 1231-1238 (2010).
  47. A. Zengin, U. Tamer, and T. Caykara, Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles, Anal. Chim. Acta, 817, 33-41 (2014).
  48. J. Zdunek, E. Benito-Pena, A. Linares, A. Falcimaigne-Cordin, G. Orellana, K. Haupt, and M. C. Moreno-Bondi, Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics, Chemistry, 19, 10209-10216 (2013).
  49. B. G. Healey and D. R. Walt, Improved fiber-optic chemical sensor for penicillin, Anal. Chem., 67, 4471-4476 (1995).
  50. M. K. Pawar, K. C. Tayade, S. K. Sahoo, P. P. Mahulikar, A. S. Kuwar, and B. L. Chaudhari, Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin, Biosens. Bioelectron., 81, 274-279 (2016).
  51. P. H. Chan, H. B. Liu, Y. W. Chen, K. C. Chan, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Rational design of a novel fluorescent biosensor for ${\beta}$-lactam antibiotics from a Class A a-lactamase, J. Am. Chem. Soc., 126, 4074-4075 (2004).
  52. P. H. Chan, P. K. So, D. L. Ma, Y. Zhao, T. S. Lai, W. H. Chung, K. C. Chan, K. F. Yiu, H. W. Chan, F. M. Siu, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Fluorophore-labeled ${\beta}$-lactamase as a biosensor for ${\beta}$-lactam antibiotics: A study of the biosensing process, J. Am. Chem. Soc., 130, 6351-6361 (2008).
  53. Y. M. Liu, Y. X. Jia, and W. Tian, Determination of quinolone antibiotics in urine by capillary electrophoresis with chemiluminescence detection, J. Sep. Sci., 31, 3765-3771 (2008).
  54. J. Kurittu, S. Lonnberg, M. Virta, and M. Karp, A group-specific microbiological test for the detection of tetracycline residues in raw milk, J. Agric. Food Chem., 48, 3372-3377 (2000).
  55. P. Dzomba, J. Kugara, and M. F. Zaranyika, Extraction of tetracycline antimicrobials from river water and sediment: a comparative study of three solid phase extraction methods, Afr. J. Pharm. Pharmacol., 9, 523-531 (2015).
  56. K. C. Ahn, A. Ranganathan, C. S. Bever, S. H. Hwang, E. B. Holland, K. Morisseau, I. N. Pessah, B. D. Hammock, and S. J. Gee, Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay, Environ. Sci. Technol., 50, 3754-3761 (2016).
  57. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, and S. Zhu, Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay, Sensors (Basel), 14, 21872-21888 (2014).
  58. A. L. Saber, M. A. Elmosallamy, H. M. Killa, and M. M. Ghoneim, Selective potentiometric method for determination of flucloxacillin antibiotic, J. Taibah Univ. Sci., 7, 195-201 (2013).
  59. Y. S. Kim, J. H. Niazi, and M. B. Gu, Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip, Anal. Chim. Acta, 634, 250-254 (2009).
  60. J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, and C. Zhang, Fast determination of the tetracyclines in milk samples by the aptamer biosensor, Analyst, 135, 2706-2710 (2010).
  61. B. Chen, M. Ma, and X. Su, An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and beta-lactamase on glassy carbon electrode, Anal. Chim. Acta, 674, 89-95 (2010).
  62. M. Jacobs, V. J. Nagaraj, T. Mertz, A. P. Selvam, T. Ngo, and S. Prasad, An electrochemical sensor for the detection of antibiotic contaminants in water, Anal. Methods, 5, 4325-4329 (2013).