Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis

메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법

  • 정천우 (한양대학교 화학공학과) ;
  • 서영웅 (한양대학교 화학공학과)
  • Received : 2016.11.21
  • Accepted : 2016.11.23
  • Published : 2016.12.10


In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric $CO_2$ recycling and water splitting via renewable energy. For the concept of "methanol economy", an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called "chemical memory". All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.


Supported by : National Research Foundation of Korea (NRF)


  1. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd ed., 1-10, Wiley-VCH, Weinheim, Germany (2009).
  2. G. A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem. Int. Ed., 44, 2636-2639 (2005).
  3. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487-498 (2009).
  4. Methanol economy,, 14th November 2016.
  5. J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss, and C. Witte, Ullmann's Encyclopedia of Industrial Chemistry, Methanol, 1-27, Wiley-VCH, Weinheim, Germany (2012).
  6. R. Schlogl, The revolution continues: Energiewende 2.0, Angew. Chem. Int. Ed., 54, 4436-4439 (2015).
  7. X.-M. Liu, G. Q. Lu, Z.-F. Yan, and J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and $CO_2$, Ind. Eng. Chem. Res., 42, 6518-6530 (2003).
  8. J.-P. Lange, Methanol synthesis: a short review of technology improvements, Catal. Today, 64, 3-8 (2001).
  9. S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des., 92, 2557-2567 (2014).
  10. W. Wang, S. Wang, X. Ma, and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703-3727 (2011).
  11. E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, Selective solar- driven reduction of $CO_2$ to methanol using a catalyzed p-GaP based photoelectrochemical Cell, J. Am. Chem. Soc., 130, 6342-6344 (2008).
  12. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, $CO_2$ hydrogenation to formate and methanol as an alternative to photo- and electrochemical $CO_2$ reduction, Chem. Rev., 115, 12936-12973 (2015).
  13. J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies, 1-45, CRC Press, USA (2016).
  14. D. Nazimek and B. Czech, Artificial photosynthesis-$CO_2$ towards methanol, IOP Conf. Ser.: Mater. Sci. Eng., 19, 012010 (2010).
  15. M. Watanabe, Photosynthesis of methanol and methane from $CO_2$ and $H_2O$ molecules on a ZnO surface, Surf. Sci. Lett., 279, L236-L242 (1992).
  16. K. P. de Jong, Synthesis of Solid Catalysts, 329-351, Wiley-VCH, Weinheim (2009).
  17. G. Lormand, Industrial production of synthetic methanol, Ind. Eng. Chem., 17, 430-432 (1925).
  18. Per K. Frolich, M. R. Fenske, and D. Quiggle, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 20, 694-698 (1928).
  19. M. R. Fenske and Per K. Frolich, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 21, 1052-1055 (1929).
  20. D. Cornthwaite, Methanol synthesis catalyst, US Patent 3,923,694 (1975).
  21. B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, and R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates, Chem. Eur. J., 9, 2039-2052 (2003).
  22. M. Behrens, Meso- and nano-structuring of industrial Cu/ZnO/($Al_2O_3$) catalysts, J. Catal., 267, 24-29 (2009).
  23. G. J. Millar, I. H. Holm, P. J. R. Uwins, and J. Drennan, Characterization of precursors to methanol synthesis catalysts Cu/ZnO system, J. Chem. Soc., Faraday Trans., 94, 593-600 (1998).
  24. G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 100-119, Wiley-VCH, Weinheim, Germany (2008).
  25. J.-L. Li and T. Inui, Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures, Appl. Catal. A, 137, 105-117 (1996).
  26. C. Baltes, S. Vukojevic, and F. Schuth, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/$Al_2O_3$ catalysts for methanol synthesis, J. Catal., 258, 334-344 (2008).
  27. E. Frei, A. Schaadt, T. Ludwig, H. Hillebrecht, and I. Krossing, The influence of the precipitation/ageing temperature on a Cu/ZnO/$ZrO_2$ catalyst for methanol synthesis from $H_2$ and $CO_2$, ChemCatChem, 6, 1721-1730 (2014).
  28. M. Behrens, D. Brennecke, F. Girgsdies, S. Kissner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, and R. Schlogl, Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/$Al_2O_3$ catalysts investigated by titration experiments, Appl. Catal. A, 392, 93-102 (2011).
  29. C. C. Perry and K. L. Shafran, The systematic study of aluminium speciation in medium concentrated aqueous solutions, J. Inorg. Biochem., 87, 115-124 (2001).
  30. A. C. Vermeulen, J. W. Geus, R. J. Stol, and P. L. de Bruyn, Hydrolysis-precipitation studies of aluminum (III) solutions. 1. Titration of acidified aluminum nitrate solutions, J. Colloid Interface Sci., 51, 449-458 (1975).
  31. B. C. Faust, W. B. Labiosa, K. H. Dai, J. S. MacFall, B. A. Browne, A. A. Ribeiro, and D. D. Richter, Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy, Geochim. Cosmochim. Acta, 59, 2651-2661 (1995).
  32. S. L. Wang, M. K. Wang, and Y. M. Tzou, Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions, Colloids Surf. A, 231, 143-157 (2003).
  33. M. Behrens, I. Kasatkin, S. Kuhl, and G. Weinberg, Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/$Al_2O_3$ catalysts, Chem. Mater., 22, 386-397 (2010).
  34. C. Jeong, J. Park, J. W. Bae, and Y.-W. Suh, Comparison of normal and reverse precipitation methods in the preparation of Cu/ZnO/$Al_2O_3$ catalysts for hydrogenolysis of butyl butyrate, Catal. Commun., 54, 1-5 (2014).
  35. C. Busetto, G. Del Piero, and G. Manara, Catalysts for low-temperature methanol synthesis: Preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors, Chem. Mater., 22, 386-397 (2010).
  36. C. Jeong, M. J. Hyun, and Y.-W. Suh, Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate, Catal. Commun., 70, 34-39 (2015).
  37. M. Behrens, F. Girgsdies, A. Trunschke, and R. Schlogl, Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture, Eur. J. Inorg. Chem., 2009, 1347-1357 (2009).
  38. M. J. Hyun, M. Shin, Y. J. Kim, and Y.-W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over Zn.O, Res. Chem. Intermed., 42, 57-70 (2016).
  39. K. F. Ortega, A. Huttner, J. Heese, and M. Berhens, Effect of Ni incorporation into malachite precursors on the catalytic properties of the resulting nanostructured CuO/NiO catalysts, Eur. J. Inorg. Chem., 2016, 2063-2071 (2016).
  40. D. M. Whittle, A. A. Mirzaei, J. S. J. Hargreaves, R. W. Joyner, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920 (2002).
  41. S. Zander, B. Seidlhofer, and M. Behrens, In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates - consequences for the preparation of Cu/ZnO catalysts, Dalton Trans., 41, 13413-13422 (2012).
  42. T. E. Gier, X. Bu, S.-L. Wang, and G. D. Stucky, $Na_2Zn_3(CO_3)_4{\cdot}3H_2O$, a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology, J. Am. Chem. Soc., 118, 3039-3040 (1996).
  43. C. Jeong and Y.-W. Suh, Role of $ZrO_2$ in Cu/ZnO/$ZrO_2$ catalysts prepared from the precipitated Cu/Zn/Zr precursors, Catal. Today, 265, 254-263 (2016).
  44. M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R. W. Fischer, and R. Schlogl, Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al, J. Am. Chem. Soc., 135, 6061-6068 (2013).
  45. J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst, ChemCatChem, 6, 2889-2897 (2014).
  46. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. Consuelo, A. Galvan, R. Schlogl, and M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts, ACS Catal., 5, 3260-3270 (2015).
  47. Y.-W. Suh and H.-K. Rhee, Optimum washing conditions for the preparation of Cu/ZnO/$ZrO_2$ for methanol synthesis from CO hydrogenation:Effects of residual sodium, Korean J. Chem. Eng., 19, 17-19 (2002).
  48. S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, Cu-Based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ XAS study, Chem. Eur. J., 20, 3782-3792 (2014).
  49. J. Schumann, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates, Appl. Catal. A, 516, 117-126 (2016).
  50. A. Tarasov, J. Schumann, F. Girgsdies, N. Thomas, and M. Behrens, Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts, Thermochim. Acta, 591, 1-9 (2014).
  51. G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, and R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl. Catal. A, 137, 327-348 (1996).
  52. M. M. Günter, T. Ressler, R. E. Jentoft, and B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal., 203, 133-149 (2001).
  53. T. van Herwijnen and W. A. de Jong, Brass formation in a copper/zinc oxide CO shift catalyst, J. Catal., 34, 209-214 (1974).
  54. M. S. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction, Top. Catal., 8, 259-266 (1999).
  55. T. Kandemir, F. Girgsdies, T. C. Hansen, K.-D. Liss, I. Kasatkin, E. L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlogl, and M. Behrens, In situ study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure, Angew. Chem. Int. Ed., 52, 5166-5170 (2013).
  56. J.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsoe, H. Topsoe, and B. S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts, J. Catal., 194, 452-460 (2000).
  57. P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science, 295, 2053-2055 (2002).
  58. P. C. K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A. M. Molenbroek, B. S. Clausen, and S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts, J. Catal., 262, 65-72 (2009).
  59. T. Lunkenbein, J. Schumann, M. Behrens, R. Schlogl, and M. G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/$Al_2O_3$ catalysts induced by strong metal-support interactions, Angew. Chem. Int. Ed., 54, 4544-4548 (2015).
  60. M. B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlogl, M. Muhler, and O. Hinrichsen, Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chem. Int. Ed., 53, 7043-7047 (2014).
  61. S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, and J. Sehested, Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst, Angew. Chem. Int. Ed., 53, 5941-5945 (2014).

Cited by

  1. Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst vol.36, pp.2, 2019,