Variation of Structural and Optical Properties of ZnO Nanorods with Growing Time

성장시간에 따른 ZnO 나노로드의 구조적 및 광학적 특성 변화

  • Ma, Tae-Young (Department of Electrical Engineering & Engineering Research Institute, Gyeongsang National University)
  • 마대영 (경상대학교 전기공학과 및 공학연구원)
  • Received : 2016.08.10
  • Accepted : 2016.11.03
  • Published : 2016.12.01


ZnO nanorods were grown on $SiO_2$ coated Si wafers and glass by the hydrothermal method. The structural and optical properties variation of ZnO nanorods as a function of growing time was studied. ~10 nm-thick ZnO thin films deposited on substrates by rf magnetron sputtering were employed as seed layers. Zinc nitrate hexahydrate (0.05 M) and hexamethylenetetramine (0.05 M) mixed in DI water were used as a reaction solution. ZnO nanorods were respectively grown for 30 min, 1 h, 2 h, 3 h, and 4 h by maintaining the reactor at $90^{\circ}C$. Crystallinity of ZnO nanorods was analyzed by X-ray diffraction, and the morphology of nanorods was observed by a field emission scanning electron microscope. Transmittance and absorbance were measured by a UV-Vis spectrophotometer, and energy band gap and urbach energy were obtained from the data. Photoluminescence measurements were carried out using Nd-Yag laser (266 nm).


  1. A. Helal, F. A. Harraz, A. A. Ismail, T. M. Sami, and I. A. Ibrahim, Materials & Design, 102, 202 (2016). [DOI:]
  2. E. Zeimaran, S. Pourshahrestani, S.F.S. Shirazi, B. P. Murphy, N. A. Kadri, and M. R. Towler, J. of Non-Cryst. Solids, 443, 118 (2016). [DOI:]
  3. M. Chakraborty, P. Mahapatra, and R. Thangavel, Thin Solid Films, 612, 49 (2016). [DOI: https:/]
  4. C. Yilmaz and U. Unal, Appl. Surf. Sci., 368, 456 (2016). [DOI: https:/]
  5. J. Chu, Z. Kong, D. Lu, W. Zhang, X. Wang, Y. Yu, and J. Ma, Mater. Lett., 166, 179 (2016). [DOI:]
  6. X. Kuang T. Liu, D. Shi, W. Wang, M. Yang, S. Hussain, and F. Pan, Appl. Surf. Sci, 364, 371 (2016). [DOI:]
  7. A. G. Cullis and L. T. Canham, Nature, 353, 335 (1991). [DOI: https:/]
  8. K. Hiruma, K. Ogawa, M. Koguchi, H. Kakibayashi, and G. P. Morgan, Appl. Phys. Lett., 59, 431 (1991). [DOI:]
  9. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys., 77, 447 (1995). [DOI:]
  10. L. F. Silva, A. C. Catto, W. Avansi, L. S. Cavalcante, V. R. Mastelaro, J. Andres, and E. Longo, J. Alloys Compd., 683, 186 (2016). [DOI:]
  11. W. C. Chang, H. S. Chen, W. C. Yu, Appl. Phys. Lett., 106, 013908 (2015). [DOI: https:/]
  12. N. S. Harale, A. S. Kamble, N. L. Tarwal, I. S. Mulla, V. K. Rao, J. H. Kim, and P. S. Patil, Ceram. Int., 42, 12807 (2016). [DOI:]
  13. M. Chakraborty, P. Mahapatra, and R. Thangavel, Thin Solid Films, 612, 49 (2016). [DOI: https:/]
  14. P. S. Shewale and Y. S. Yu, Ceram. Int., 42, 7125 (2016). [DOI: https:/]
  15. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291, 1947 (2001). [DOI: https:/]
  16. E. Ziegler, A. Heinrich, H. Oppermann, and G. Stover, Phys. Status Solidi A, 66, 635 (1981). [DOI: https:/]
  17. E. Marquez, J.M.G. Leal, R. J. Garay, S. R. Lukic, and D. M. Petrovic, J. Phys. D: Appl. Phys., 30, 690 (1997). [DOI: https:/]
  18. A. Hafdallah, F. Yanineb, M. S. Aida, and N. Attaf, J. of Alloys & Compd, 509, 7267 (2011). [DOI:]
  19. J. H. Zhao, C. J. Liu, and Z. H. Lv, Optik, 127, 1421 (2016). [DOI: https:/]
  20. Y. Wang, Z. Hou, H. Guo, L. Shen, G. Wang, F. Cui, and Q. Zhang, Mater. Lett., 91, 107 (2013). [DOI:]