DOI QR코드

DOI QR Code

Anti-Reflection Thin Film For Photoelectric Conversion Efficiency Enhanced of Dye-Sensitized Solar Cells

염료감응형 태양전지의 광전변환효율 향상을 위한 무반사 박막

  • Jung, Haeng-Yun (Laser Research Center, Korea Photonics Technology Institute) ;
  • Ki, Hyun-Chul (Laser Research Center, Korea Photonics Technology Institute) ;
  • Hong, Kyung-Jin (Department of Electrical & Electronic Engineering, Gwangju University)
  • 정행윤 (한국광기술원 레이저연구센터) ;
  • 기현철 (한국광기술원 레이저연구센터) ;
  • 홍경진 (광주대학교 전기전자공학과)
  • Received : 2016.10.14
  • Accepted : 2016.10.26
  • Published : 2016.12.01

Abstract

DSSCs (dye-sensitized solar cells) based on $TiO_2/SiO_2$ multi layer AR (anti-reflection) coating on the outer glass FTO (fluorine-doped tin oxide) substrate are investigated. We have coated an AR layer on the surface of a DSSCs device by using an IAD (ion beam-assisted deposition) system and investigated the effects of the AR layer by measuring photovoltaic performance. Compared to the pure FTO substrate, the multi layer AR coating increased the total transmittance from 67.4 to 72.9% at 530 nm of wavelength. The main enhancement of solar conversion efficiency is attributed to the reduction of light reflection at the FTO substrate surface. This leads to the increase of Jsc and the efficiency improvement of DSSCs.

References

  1. K. W. Boer, Advances in Solar Energy (Plenum Press, New York, 1986). [DOI: https:/doi.org/10.1007/978-1-4613-2227-6]
  2. D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, Sol. Energy Mater. Solar Cells, 52, 79 (1998). [DOI: https:/doi.org/10.1016/S0927-0248(97)00273-0] https://doi.org/10.1016/S0927-0248(97)00273-0
  3. A. Combert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Witter, Solar Cells, 63, 357 (2000).
  4. M. C. Bautista and A. Morales, Sol. Energy Mater. Solar Cells, 80, 217 (2003). [DOI: https:/doi.org/10.1016/j.solmat.2003.06.004] https://doi.org/10.1016/j.solmat.2003.06.004
  5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Functional Mater, 15, 1617 (2005). [DOI: https:/doi.org/10.1002/adfm.20050021] https://doi.org/10.1002/adfm.200500211
  6. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Functional Mater, 11, 15 (2001). [DOI: https:/doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A] https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  7. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, Progress in Photovoltaics: Res. Appl, 347 (2003). [DOI: https:/doi.org/10.1002/pip.499] https://doi.org/10.1002/pip.499
  8. H. Shinohara, M. Abe, K. Nishi, and Y. Arai, Proc. the 24th IEEE Photovoltaic Specialists Conference (IEEE, Waikoloa, Hawaii, 1994) p. 682.
  9. F. C. Krebs, Solar Energy Materials & Solar Cells, 93, 1636 (2009). [DOI: https:/doi.org/10.1016/j.solmat.2009.04.020] https://doi.org/10.1016/j.solmat.2009.04.020
  10. M. M. Koltun, Optika imetrologiya solnechnykh elementov (Moscow: Nauka, Russia, 1985) p. 280.
  11. N. D. Arora and J. R. Hauser, J. Appl. Phys., 53, 8839 (1982). [DOI: https:/doi.org/10.1063/1.330436] https://doi.org/10.1063/1.330436
  12. M. A. Alaluf, J. Appelbaum, and N. Crouitoru, Thin solid Films, 320, 159 (1998). [DOI: https:/doi.org/10.1016/S0040-6090(97)00923-1] https://doi.org/10.1016/S0040-6090(97)00923-1
  13. D. Bouhafs, A. Moussi, A. Chikoue, and J. M. Ruiz, Sol. Energy Mater. Sol. Cells, 52, 79 (1998). [DOI: https:/doi.org/10.1016/S0927-0248(97)00273-0] https://doi.org/10.1016/S0927-0248(97)00273-0
  14. V. M. Aroutiounian, K. R. Maroutyana, A. L. Zatikyana, and K. J. Touryanb, Sol. Energy Mater. Sol. Cells, 403, 517 (2002).
  15. V. M. Aroutiounian, K. R. Maroutyan, L. M. Aroutiounian, K. R. Maroutyan, A. L. Zatikyan, C. L. Clement, and K. J. Touryan, Proc. SPIE on Solar and Switching Materials Conference (San-Diego, USA, 2001).
  16. V. M. Aroutiounian, K. S. Martirosyan, A. S. Hovhannisyan, and P. G. Soukiassian, Proc. SPIE Optics and Photonics Conference (San-Diego, USA, 2006).
  17. V. M. Aroutiounian, K. S. Martirosyan, and P. Soukiassian, J. of Phys. D.: Appl. Phys, 37, L25 (2004). [DOI: https:/doi.org/10.1088/0022-3727/37/19/L01] https://doi.org/10.1088/0022-3727/37/19/L01
  18. V. M. Aroutiounian, K. S. Martirosyan, and P. Soukiassian, J. of Phys. D.: Appl. Phys, 39, 1623 (2006). [DOI: https:/doi.org/10.1088/0022-3727/39/8/022] https://doi.org/10.1088/0022-3727/39/8/022
  19. D. Buiea, M. J. McCannb, K. J. Weberb, C. J. Deya, Solar Energy Materials & Solar Cells, 81, 13 (2004). [DOI: https:/doi.org/10.1016/j.solmat.2003.08.009] https://doi.org/10.1016/j.solmat.2003.08.009
  20. H. K. Pulker, Proc. SPIE, 1019, 138 (Hamburg, Germany, 1988). [DOI: https:/doi.org/10.1117/12.950029] https://doi.org/10.1117/12.950029
  21. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and D. Abe, Journal of Electroanalytical Chemistry, 570, 257 (2004). [DOI: https:/doi.org/10.1016/j.jelechem.2004.04.004] https://doi.org/10.1016/j.jelechem.2004.04.004
  22. N. Koide, A. Islam, Y. Chiba, and L. Han, J. Photochem. Photobio. A Chem., 182, 296 (2006). [DOI: https:/doi.org/10.1016/j.jphotochem.2006.04.030] https://doi.org/10.1016/j.jphotochem.2006.04.030