DOI QR코드

DOI QR Code

Mechanical Properties of Epoxy Alumina Multi-Composites

에폭시 알루미나 멀티-콤포지트의 기계적 특성연구

  • Park, Jae-Jun (Department of Electrical Elecrtonic Engineering, Joongbu University)
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2016.10.15
  • Accepted : 2016.11.23
  • Published : 2016.12.01

Abstract

In order to develop an electrical insulation material for gas GIS (insulation switch gear) spacer, 4 types of epoxy/micro-alumina (40, 50, 60, 70 wt%) composites and 9 types of epoxy/nano-alumina (1, 3, 5 g)/micro-alumina (40, 50, 60, 70 wt%) composites were prepared and tensile test was carried out. In here, nano-alumina was previously surface-treated with GDE (glycerol diglycidyl ether). As micro-alumina and GDE-treated nano-alumina contents increased, tensile strength increased and the highest value was shown in the system with 3 g GDE-treated nano-alumina.

References

  1. T. W. Dakin, IEEE Transaction on Dielectrics and Electrical Insulation, EI-9, 121 (1974). [DOI: https://doi.org/10.1109/TEI.1974.299321] https://doi.org/10.1109/TEI.1974.299321
  2. J. Sato, O. Sakaguchi, N. Kubota, S. Makishima, S. Kinoshita, T. Shioiri, T. Yoshida, M. Miyagawa, M. Homma, and E. Kaneko, Proc. Transmission and Distribution Conference and Exhibition Asia Pacific (Yokohama, Japan, 2002) p.1791. [DOI: https://doi.org/10.1109/TDC. 2002.1177727] https://doi.org/10.1109/TDC.2002.1177727
  3. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Conf. Electr. Insul. Dielectr., 13, 319 (2006). [DOI: https://doi.org/10.1109/TDEI.2006.1624276] https://doi.org/10.1109/TDEI.2006.1624276
  4. T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, and T. Shimizu, IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), 402 (2004).
  5. J. J. Park, Trans. KIEE., 65 (2016).
  6. T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, IEEE Transaction on Dielectrics and Electrical Insulation, 12, 669 (2005). [DOI: https://doi.org/10.1109/TDEI.2005.1511092] https://doi.org/10.1109/TDEI.2005.1511092
  7. G. Tsagaropoulos and A. Eisenberg, Macromolecules, 28, 6067 (1995). [DOI: https://doi.org/10.1021/ma00122a011] https://doi.org/10.1021/ma00122a011
  8. Z. Farhadinejad, M. Ehsani, S. Moemenbellah, S.M.B. Alavi, M.M.S. Shirazi, and H. Borsi, IEEE Transactions on Nanotechnology, 11, 957 (2012). [DOI: https://doi.org/10.1109/TNANO.2012.2209458] https://doi.org/10.1109/TNANO.2012.2209458
  9. R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng. A, 445, 567 (2007). [DOI: https://doi.org/10.1016/j.msea.2006.09.077] https://doi.org/10.1016/j.msea.2006.09.077
  10. H. Shi, N. Gao, H. Jin, and C. Wang, Mater. Sci. Forum, 658, 463 (2010). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.658.463] https://doi.org/10.4028/www.scientific.net/MSF.658.463
  11. A. Omrani, L. C. Simon, and A. A. Rostami, Mat. Chem. Phys., 114, 145 (2009). [DOI: https://doi.org/10.1016/j.matchemphys.2008.08.090] https://doi.org/10.1016/j.matchemphys.2008.08.090
  12. Z. Ahmad, M. P. Ansell, and D. Smedley, Int. J. Eng. Technol., 10, 32 (2010).
  13. S. A. Meguid and Y. Sun, Mater. Design, 25, 289 (2004). [DOI: https://doi.org/10.1016/j.matdes.2003.10.018] https://doi.org/10.1016/j.matdes.2003.10.018
  14. R. R. Patel and N. Gupta, Proc. 15th Nat. Power Syst. Conf. (Mumbai, India, 2008) p. 361.
  15. Q. Wang, G. Chen, and A. S. Alghamdi, Proc. 10th IEEE Int. Conf. Solid Dielectr. (Potsdam, Germany, 2010) p. 263.