DOI QR코드

DOI QR Code

The Effects of TiO2 Addition on the Electrical Insulation of AlN Ceramics with 1 wt% Y2O3

Y2O3가 1 wt% 첨가된 AlN 세라믹의 전기절연성에 미치는 TiO2 첨가의 효과

  • Lee, Jin-Uk (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering) ;
  • Lee, Won-Jin (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
  • 이진욱 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이원진 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2016.08.16
  • Accepted : 2016.10.26
  • Published : 2016.12.01

Abstract

The effects of $TiO_2$ addition on the electrical insulation of AlN ceramics with 1 wt% $Y_2O_3$ as a sintering aid have been investigated. Some of $TiO_2$ has reacted with AlN powders and transformed to fine TiN particles during sintering, which was uniformly dispersed along grain boundaries of AlN. At a high electrical field (500 V/mm), the resistivity of AlN ceramics with $TiO_2$ addition of 0.2 wt% increased about 1000 times from $3{\times}10^{10}{\Omega}cm$ to $3.1{\times}10^{13}{\Omega}cm$. Based on the impedance spectroscopy measurement, it was found that $TiO_2$ addition increased dramatically electrical resistivity of AlN grains much more than that of grain boundaries. Thus, $TiO_2$ was believed to dissolve inside AlN grains to suppress ionic conduction of Al vacancies. This suppressed ionic conduction by Ti incorporation into AlN grains seems to contribute to more electrically insulating AlN ceramics.

Acknowledgement

Supported by : 산업통상자원부

References

  1. A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc., 72, 2031 (1989). [DOI: https:/doi.org/10.1111/j.1151-2916.1989.tb06027.x] https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  2. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, IEEE Trans. Comp., 13, 313 (1990).
  3. K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, J. Mater. Res., 14, 1409 (1999). [DOI: https:/doi.org/10.1557/JMR.1999.0191] https://doi.org/10.1557/JMR.1999.0191
  4. Y. Imanaka, Y. Suzuki, T. Suzuki, K. Hirao, T. Tsuchiya, H. Nagata, and J. S. Cross, Advanced Ceramic Technologies and Products (Springer, Japan, 2012). [DOI: 10.1007/978-4-431-54108-0]
  5. H. Nakanto, K. Watari, H. Hayashi, and K. Urabe, J. Am. Ceram. Soc., 85, 3093 (2002). [DOI: https:/doi.org/10.1111/j.1151-2916.2002.tb00587.x] https://doi.org/10.1111/j.1151-2916.2002.tb00587.x
  6. S. A. Jang and G. M. Choi, J. Am. Ceram. Soc., 75, 3145 (1992). [DOI: https:/doi.org/10.1111/j.1151-2916.1992.tb04402.x] https://doi.org/10.1111/j.1151-2916.1992.tb04402.x
  7. S. A. Jang and G. M. Choi, J. Am. Ceram. Soc., 76, 957 (1993). [DOI: https:/doi.org/10.1111/j.1151-2916.1993.tb05319.x] https://doi.org/10.1111/j.1151-2916.1993.tb05319.x
  8. W. J. Lee, S. M. Lee, K. B. Shim, and H. T. Kim, J. Korean. Ceram. Soc., 44, 116 (2007). [DOI: https:/doi.org/10.4191/KCERS.2007.44.2.116] https://doi.org/10.4191/KCERS.2007.44.2.116
  9. H. S. Kim, J. M. Chae, Y. S. Oh, H. T. Kim, K. B. Shim, and S. M. Lee, Ceram. Inter., 36, 2039 (2010). [DOI: https:/doi.org/10.1016/j.ceramint.2010.04.001] https://doi.org/10.1016/j.ceramint.2010.04.001
  10. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys.Chem Solids., 48, 641 (1987). [DOI: https:/doi.org/10.1016/0022-3697(87)90153-3] https://doi.org/10.1016/0022-3697(87)90153-3
  11. R. D. Shannon, Acta Crystal., A32, 751 (1976). [DOI: https:/doi.org/10.1107/S0567739476001551] https://doi.org/10.1107/S0567739476001551