Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment

낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • 정원채 (경기대학교 전자공학과)
  • Received : 2016.09.08
  • Accepted : 2016.10.21
  • Published : 2016.12.01


For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.


  1. T. Noda, J. of Appl. Phys., 93, 1428 (2003). [DOI: https:/]
  2. S. Scalese, M. Italia, A. La Magna, G. Mannino, V. Privitera, and P. Pichler, J. Appl. Phys., 93, 9773 (2003). [DOI: https:/]
  3. P. Chena, Z. Anb, M. Zhua, R.K.Y. Fua, and P. K. Chua, Mat. Sci. Eng., B 114, 251 (2004). [DOI: https:/]
  4. J. F. Ziegler, Nucl. Inst. Phys. Res., B6, 270 (1985). [DOI: https:/]
  5. J. P. Biersack, Nucl. Inst. Phys. Res., B35, 205 (1988). [DOI: https:/]
  6. J. P. Biersack, Nucl. Inst. Meth., B18, 344, (1987).
  7. S. J. Morris, B. Obradovic, S. H. Yang, and A. F. Tasch, IEDM Tech. Digest (1996) p. 721.
  8. C. Park, K. M. Klein, and A. F. Tasch, Soild State Electonics, 33, 645 (1990). [DOI: https:/]
  9. B. E. Kareh, Fundamentals of Semiconductor Processing Technology (Kluwer Academic Publishers, USA, 1995) p. 352. [DOI: https:/]
  10. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology (Prentice Hall, Inc., USA, 2000) p. 451.
  11. H. Ryssel, J. Lorenz, and W. Kreuger, Nucl. Inst. Phys. Res., B19, 45 (1987). [DOI: https:/]
  12. H. Hofsassa, K. Zhanga, and A. Mutzke, Appl. Surf. Sci., 310, 134 (2014).
  13. W. Moller, W. Eckstein, and J. P. Biersack, Comp. Phys. Commun., 51, 355 (1988).
  14. W. Moller and W. Eckstein, Nucl. Inst. Meth., B2, 814 (1984).
  15. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991). [DOI: https:/]
  16. A. Bartel, J. Lorenz, and H. Ryssel, Nucl. Inst. Phys. Res., B6, 121 (1988).
  17. H. Ryssel, J. Lorenz, and W. Kreuger, J. Appl. Phys., A41, 201 (1986). [DOI: https:/]
  18. G. F. Cerofolini, G. Ferla, G. U. Pignatel, and F. Riva, Thin Soild Films, 101, 273 (1983).
  19. S. Gennaro, M. Barozzi, M. Bersani, B. J. Sealy, and R. Gwilliam, Nucl. Inst. Phys. Res., B237, 88 (2005). [DOI: https:/]
  20. K. Suzuki, H. Tashiro, and T. Aoyama, Sol. State Elec., 43, 27 (1999). [DOI: https:/]